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Guiding Question

Given a matrix equation Ax = b, for a real matrix A and a real
vector b, how do we find a solution x?
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Graphical Method

Consider each equation as defining a line / plane / hyperplane
in Euclidean space.

Draw each plane and see where they all intersect.
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Cramer’s Rule

For Ax = b, let Aj = the matrix formed by replacing the j-th
column of A with b. Then:

xj =
det(Aj)

det(A)
.

What is the determinant of a matrix? See next slide.
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Determinants

The determinant of a square matrix A can be defined
inductively as follows:

1. The determinant of a 1× 1 matrix is its only entry.

2. The determinant of a n × n matrix can be obtained by:
Fixing a row j . Defining the matrix A(j , k) to be the
matrix leaving out the j-th row and k-th column.

det(A) =
n∑

k=1

(−1)j+kAj ,k det(A(j , k))
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Determinants – Geometric View

If you consider the matrix A as a linear map between two
vector spaces, then the determinant can be thought of as the
volume of the unit cube after passing through the map A.

–image from Wikipedia.
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Naive Gauss Elimination

INPUT: n × (n + 1) Matrix A|b
1. Fix pivot variable A1,1.

2. Perform row operations to eliminate everything below
the pivot variable.

3. If k < n, change pivot variable from Ak,k to Ak+1,k+1 and
repeat step 2.

4. Solve for xk and substitute its value into Row k − 1.
Repeat to solve for each xk .

Row operations: Permute rows, add a scalar multiple of row j
to row k .
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Naive Gaussian Elimination - Example

 1 2 3 4
6 5 8 7
3 1 4 2
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Naive Gauss - Complexity

How many operations does Naive Gaussian elimination take?

#operations =
n−1∑
k=1

#(operations at pivot k)

+
n∑

k=1

#(operations to solve for xk)

=
n−1∑
k=1

2(n − k)(n − k − 1) +
n∑

k=1

(n − k + 2)
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Naive Gauss - Complexity

=
n−1∑
k=1

2n2 −
n−1∑
k=1

4nk +
n−1∑
k=1

2k2 −
n−1∑
k=1

2n

+
n−1∑
k=1

2k +
n∑

k=1

n −
n∑

k=1

k +
n∑

k=1

2.

=2n3 − 3n2 + 3n + (−4n + 1)
n−1∑
k=1

k + 2
n−1∑
k=1

k2.

Note that
∑n−1

k=1 k = 1
2
n2 +O(n) and

∑n−1
k=1 k

2 = 1
3
n3 +O(n2).
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Naive Gauss - Complexity

So we are left with:

=2n3 − 3n2 + 3n + (−4n + 1)(
1

2
n2 + O(n)) + 2(

1

3
n3 + O(n2))

=
2

3
n3 + O(n2).
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Pivoting

We have to be careful! Sometimes Ak,k = 0 or is numerically
very close to zero.

I Partial pivoting means at each step, search column k for
the largest element Ajk then switch rows j and k .

I Complete pivoting means that we also search for the
highest value in the row j (This would mean relabeling
variables, which is undesirable).
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Pivoting - Example

Example (
.0003 3.0000

1.0000 1.0000

)(
x1
x2

)
=

(
2.0001
1.0000

)
Compare the results you obtain via naive Gaussian elimination,
and pivoting. (Use MATLAB for your computation.)
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Tridiagonal Systems

A tridiagonal system is a matrix equation Ax = b, when the
only nonzero entries of A are Ai ,i−1,Ai ,i , and Ai ,i+1 (wherever
these indices make sense).

a1,1 a1,2 0 0 · · · 0
a2,1 a2,2 a2,3 0 · · · 0

0
. . . . . . . . .

...

0 · · · · · · 0 an−1,n an,n
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Tridiagonal Systems - Complexity

Question: How many operations does Gaussian Elimination
take for a tridiagonal system?

Perform a complexity computation similar to the slides above
regarding Naive Gaussian Elimination, accounting for both
elimination and substitution steps. Your result should be O(n).
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LU Factorization

Problem: Find a way to quickly solve Ax = b when A is fixed
but we want to solve for a number of inputs b.

Idea: Factor A as A = LU where L is lower-triangular and U
is upper-triangular. Then, suppose there exists a vector d so
that Ld = b.

Ax = b =⇒ LUx = b =⇒ LUx = Ld ⇐⇒ Ux = d .

At this point, we have two equations with triangular matrices:

Ux = d , Ld = b.
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Solving with LU Factorization

Given these two triangular systems Ux = d , Ld = b, we do not
need to worry about the elimination part of Gaussian
elimination – just the substitution part.

Solve for d1 through dn substituting down at each step.
Then solve for xn through x1 substituting up at each step.
This drastically cuts down complexity.
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LU Factorization – How?

It should be clear by now that an LU factorization would be
really useful for equation solving. But how do we obtain it?
Fix A as our matrix.
Perform the standard Gaussian elimination, when our pivot
variable is Akk , we eliminate entry Ajk below the diagonal by
replacing row Rj with cjk ∗ Rk + Rj . Set Ljk to be −cjk .

I U is the matrix spit out by Gaussian elimination.

I L is the matrix with ones on the diagonal, and the lower
entries obtained as above.
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LU Factorization - Example

Let A be the matrix:  1 2 3
6 5 8
3 1 4


Let b be the vector (4, 7, 2). Solve Ax = b by:

1. Standard Gaussian Elimination.

2. Finding A = LU then solving Ld = b and Ux = d .
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