Iterative Algorithms

Zvi Rosen Department of Mathematics

October 23, 2016

We want to solve Ax = b for large matrices A. Naive Gaussian Elimination takes $\frac{2}{3}n^3 + O(n^2)$ floating-point operations to solve the system.

What happens if we trade precision for iterative approximation?

The Gauss-Seidel algorithm is a type of fixed-point iteration. Using the equation Ax = b, we take $A = L_* + U$ where L_* is lower-triangular with nonzero diagonal, and U is strictly upper-triangular with zero diagonal. Then,

$$L_*x + Ux = b \Rightarrow L_*x = b - Ux.$$

Given the value of the *i*-th iteration $\mathbf{x}^{(i)}$, we solve for $x_1^{(i+1)}$ using $L_* x_1^{(i+1)} = b - U x^{(i)}$ and then substitute forward to solve for $x_k^{(i+1)}$ in terms of $x_1^{(i+1)}, \ldots, x_{k-1}^{(i+1)}$ and $x_{k+1}^{(i)}, \ldots, x_n^{(i)}$. The Gauss-Seidel algorithm is a type of fixed-point iteration. Using the equation Ax = b, we take $A = L_* + U$ where L_* is lower-triangular with nonzero diagonal, and U is strictly upper-triangular with zero diagonal. Then,

$$L_*x + Ux = b \Rightarrow L_*x = b - Ux.$$

Given the value of the *i*-th iteration $\mathbf{x}^{(i)}$, we solve for $x_1^{(i+1)}$ using $\mathcal{L}_* x_1^{(i+1)} = b - U x^{(i)}$ and then substitute forward to solve for $x_k^{(i+1)}$ in terms of $x_1^{(i+1)}, \ldots, x_{k-1}^{(i+1)}$ and $x_{k+1}^{(i)}, \ldots, x_n^{(i)}$.

In particular, we can use the following formula to compute $x_k^{(i+1)}$ using the following formula:

$$x_k^{(i+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{k-1} a_{kj} x_j^{(i+1)} - \sum_{j=k+1}^n a_{kj} x_j^{(i)}
ight).$$

The Gauss-Seidel algorithm converges in two cases:

- 1. Diagonally dominant matrices, whose diagonal elements $|a_{ii}|$ are larger than the sum of the rest of the row $\sum_{j \neq i} |a_{ij}|$.
- 2. Symmetric positive-definite matrices.

It may also converge in other cases, but convergence is not guaranteed.

The following matrix is a diagonally dominant 4×4 matrix.

4.0855	0.9289	0.2373	0.5211
0.2625	4.7303	0.4588	0.2316
0.8010	0.4886	4.9631	0.4889
0.0292	0.5785	0.5468	4.6241

The first three iterations of Gauss-Seidel yield:

(0.1662, 0.0744, 0.0399, 0.1986)

 \rightarrow (0.1217, 0.0633, 0.0286, 0.2016)

ightarrow (0.1245, 0.0641, 0.0278, 0.2016)

Gauss-Seidel in practice tends to be pretty slow.

For *very* large matrices, it's a useful way of sharpening a good initial guess.

At each stage of the algorithm, we get a new value for each x_k using the Gauss-Seidel method.

Sometimes, it is advantageous to use a weighted average of the previous value and the new value. In particular, we can take:

$$x_k^{(i+1)} = \lambda x_k^{(i+1)} + (1-\lambda) x_k^{(i)}.$$

The parameter λ is allowed to take values in the interval (0,2). If $\lambda < 1$ our algorithm is called underrelaxed, and if $\lambda > 1$, it is overrelaxed.