Diagonalization & Singular-Value Decomposition

Zvi Rosen Department of Mathematics

October 28, 2016

Use eigenvalues and eigenvectors to factor a matrix into a more useful product of matrices. (Diagonalization) Generalize this concept to non-diagonalizable matrices.

We know how to compute eigenvalues and eigenvectors, whether using MATLAB or by the characteristic polynomial. Fix a (diagonalizable) matrix A. Let D be a diagonal matrix whose diagonal entries are the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A, and P be the matrix whose columns are the corresponding eigenvectors x_1, \ldots, x_n , which form a basis of the vector space. Then:

$$A = PDP^{-1}.$$

Why? Consider how this decomposition acts on the eigenvectors.

Not every matrix is diagonalizable. Consider the matrix

1 1 0 1

This does not have a set of eigenvectors that span the space. How can we tell?

In many applications, we want to compute A^M without doing M-1 matrix multiplications. If we have a diagonalization $A = PDP^{-1}$, then

$$A^{M} = (PDP^{-1})(PDP^{-1})\cdots(PDP^{-1})$$
$$\implies A^{M} = PD(P^{-1}P)D(P^{-1}\cdots P)DP^{-1}) = PD^{M}P^{-1}.$$

Power of a diagonal matrix D^M is the diagonal matrix with entries raised to the power.

Generalizes the notion of diagonalization for arbitrary $m \times n$ matrices.

 $A = U\Sigma V^*$ is a decomposition with U, V orthogonal matrices – corresponding to rotations – and Σ is a diagonal matrix ordered from largest to smallest entries – corresponding to stretching. The entries of Σ are called singular values of the matrix. They are eigenvalues of MM* and M*M. Strongly recommended piece on SVD: http://www.ams.org/samplings/feature-column/fcarc-svd. If we throw away smaller singular values of the matrix, the matrix keeps doing its large-scaling operations, but instead of shrinking some vectors, it just collapses them to zero.

Imagine that instead of returning a vector in the larger ellipsoid at left, it returns a vector in the oval. (Image from Wikipedia)

An image with an $m \times n$ grid of grayscale pixels can be written as an $m \times n$ matrix with entries between 0 and 255.

Applications: Image Processing

For instance, consider this image:

This has 700 \times 700 pixels, almost all black or white, with some grayscale.