Commutative Algebra: Rings

Dr. Zvi Rosen

Department of Mathematical Sciences, Florida Atlantic University

Definition: Ring

Let A be a set with two binary operations, addition & multiplication s.t. 1) (A, +) is an abelian gp.

OA, additive inverses, + Comm

2) X associative, distributes over the addition on Left and Right. a(bc) = (ab)c.

Definition: Ring

$$a(b+c) = ab+ac$$

 $(a+b)c = ac+bc.$

3) X comm. (comm. ring) Xy = yx.

4) 1A multiplicative identity.

Is the Abelian group axiom necessary?

$$(1_{A} + x) (1_{A} + y) = 1_{A}(1_{A} + y) + x(1_{A} + y)$$

$$(1_{A} + x) (1_{A} + y) = 1_{A}(1_{A} + y) + x(1_{A} + y)$$

$$(1_A + x)1_A + (1_A + x)y$$
 $1_A + y + x + y$
 $1_A + x + y + xy$

What if we drop properties?

No additive inverses. (i.e. Semigroup under +)

Semi-ring. Fx Trapical

Semi-ring. Ex Tropical Semi-ring.

▶ No 1_A (multiplicative identity).

rng (missing i) Ex Any 2-sided ideal in a ring.

▶ Distributive on one side only, and (A, +) not abelian.

near-ring. Ex Functions on a group.

Some Commutative Rings you Probably Know

integers. rationals (b) reals. R in R.

Z/nZ integers mod n

C(X) continuous

Fus on topological sp X.

in R.

R[[X]] power

series in X

with coeffs

in R.

R[x] ring of polynomials in x with coeffs

Some Noncommutative Rings you Might Know

H = ring of Hamilton Quaternions

$$\begin{cases} a+bi+cj+dk \mid i^2=j^2=k^2=-1 \\ ijk=1 \end{cases}$$

Definition: Ring Homomorphism

Map
$$f: A \rightarrow B$$
 satisfying
1) $f(x+y) = f(x) + f(y)$
2) $f(xy) = f(x)f(y)$.
3) $f(1_A) = 1_B$.

Examples of Ring Homomorphisms

$$\begin{array}{cccc}
\mathbb{Z} & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & & & & & \\
\mathbb{Z} & & & & &$$

F(0) and
$$f(1)$$

We were told $f(1) = 1_B$

What about $f(0)$?

 $f(a+b) = f(a) + f(b)$
 $f(x) = f(a+0_A) = f(x) + f(0_A)$
 $f(0) = f(0) = 0_B$

Definition: Subring

S = A ring. $\underline{1}_{A} \in S$. S closed under add. mult. S subring of A.

additive subgroup Q < A closed under mult. by A i.e. YXEA, YaEA, XAEA. · Quotient A/A ((+A): reA) (r+a)+(s+a)=(r+s)+a (r+a)(s+a)=rs+a

Definition: Ideal & Quotient

· An ideal of A is an

Why must ideals be closed under multiplication by *A*?

$$(r+q)(s+q) = rs+q$$

 $(r+q)(s+b) = a,b \in Q$
 $rs+as+rb+ab = rs \mod Q$
 $as+rb+ab \in Q$
Set $a=0$, $rb \in Q$. $\Rightarrow aA \subseteq Q$.

Bijection between sets of ideals

Proposition 1.1 (Atiyah-MacDonald)

There is a one-to-one order-preserving correspondence between ideals $\mathfrak{b} \subset A$ containing \mathfrak{a} and ideals $\tilde{\mathfrak{b}} \subset A/\mathfrak{a}$.

A =
$$Z$$
 $A = 20Z$
ideals containing A: Z , 2 Z , 4 Z , 5 Z , 10 Z .
In $Z/20Z$: $Z/20Z$, $2Z/20Z$, $4Z/20Z$, $5Z/20Z$, $10Z/20Z$.

Kernel and Image Let f:A-B be ring homomorphism. $ker(f) = \begin{cases} x \in A : f(x) = 0 \end{cases}$ $im(f) = \begin{cases} x \in B : \exists y \in A, f(y) = x \end{cases}$. * kernel is an ideal. $f(x) = 0 \Rightarrow f(ax) = f(a)f(x) = 0.$ f(1A) = 10, f(x)+f(y)=f(x+y)...

Definition: Zero-divisor A ring. xeA is zero-divisor if $\exists y \in A, y \neq 0, st. xy = 0.$ ex Z/67: 2,3 \$0, 2.3=0. C([0,1]): Zero-divisors. Ring with no Zero-divisors is an integral domain.

Definition: Nilpotent

Let A be ring.

XEA is nilpotent if Jhe IN

St. $x^n = 0$.

Ex 2/82: 2 nilpotent.

M2(R):(00) nilpotent (not comm

Definition: Principal Ideal

Ideal given by all multiples of x e A. Written as (x) or Ax.

Ex 122 principal ideal. { 12,24, -12,...} (x^2-1) c $\mathbb{R}[x]$ $\{x^2-1, x^3-x, \lambda x^2-2, x^3+x^2-x-1,...\}$ Non-ex $(2,x) \in \mathbb{Z}[x]$.

4 D > 4 D > 4 E > 4 E > E 990

Definition: Unit, Field

A ring. $x \in A$ unit if $\exists y \in A$ s.t. $xy = 1_A$.

If all elements of A are units then A is a field.

Fields, ideals, and homomorphisms

Proposition 1.2 (Atiyah-MacDonald)

Let A be a nonzero ring. TFAE:

- 1. A is a field.
- 2. The only ideals of A are 0 and (1).
- 3. Every homomorphism of A to a non-zero ring B is injective.

$$1 \Rightarrow 2$$
 (x) includes $xy = 1 \Rightarrow (x) = (1)$
unless $x = 0$.

$$a \Rightarrow 3$$
 ker $f: A \rightarrow B$ not (1).
 $\Rightarrow \ker f = (0) \Rightarrow f : inj$.