Commutative Algebra: Primary Decomposition

Dr. Zvi Rosen

Department of Mathematical Sciences, Florida Atlantic University

Outline

Motivation

Definitions

Theorems

Motivation: Quadratic Number Fields

$$X \in \mathbb{Q}, \text{ Unique expression}$$

$$X = \frac{1}{2^{m_1} \cdot p_r} \text{ Princs.}$$

$$\frac{1}{2^{m_1} \cdot q_s} \text{ Princs.}$$

$$(1n) \mathbb{Q}(\sqrt{-5}), \quad 6 = 2.3 = (1+\sqrt{-5})(1-\sqrt{-5}).$$

$$=) (a) \text{ is not prime.}$$

$$(6) = (a, 1+\sqrt{-5})^2 \cap (3, 1+\sqrt{-5}) \cap (3, 1-\sqrt{-5}).$$

Motivation: Algebraic Varieties

Fix an ideal
$$I \subseteq C[x,y]$$
, e.g. $I = \langle xy(y-x^2), y(y-1)(y-x^2) \rangle$.

The corresponding variety $V(I) \subset \mathbb{C}^2$ is the set of points where all functions in I vanish.

$$I = (y) \cap (y-x^2) \cap (x, y-1)$$

Definition: Primary Ideal

· Let A be a ring.

I S A ideal. I is primary if xyeI =) xeI or goe I. for some n >0.

· Symmetric version:

xyeI => xeI or yeI or x",y" eI for some n70.

· P prime -> A/P integral domain.

I primary => in A/I every Zero-divisor is nilpotent.

Definition: Primary Decomposition

Let A be a ring, I S A Ideal. If I can be written as I = 1 1, 2i primary this is called a primary decomposition.

Such an I is called "decomposable".

Not all ideals are decomposable

Examples tend to be hard to define.

Ideal (0) in the ring of continuous functions on [0,1],

C([0,1]) is not decomposable.

Def: p-primary

Prop: \mathfrak{q} primary $\Longrightarrow \mathfrak{r}(\mathfrak{q})$ is the smallest prime ideal containing $\mathfrak{q}.$

Claim:
$$\Gamma(g)$$
 prime.
 $\chi y \in \Gamma(g) \Rightarrow \exists n \text{ s.t. } (\chi y)^n \in g \Leftrightarrow \chi^n y^n \in g$

$$\Rightarrow \chi^n \in g \text{ or } \exists m \text{ s.t. } y^n m \in g$$

$$\Rightarrow \chi \in \Gamma(g) \text{ or } y \in \Gamma(g) \Rightarrow \gamma(g) \text{ prime.}$$
Recall: all primes containing g
contain $\Gamma(g)$.

Def: p-primary

Prop: \mathfrak{q} primary $\Longrightarrow \mathfrak{r}(\mathfrak{q})$ is the smallest prime ideal containing \mathfrak{q} .

Denote
$$p = r(g)$$
.
We say that g is a p -primary ideal.

Examples: $\mathbb{Z}, \mathbb{Q}[x, y]$

OZ. (27) primary ideal. $xy \in (27) \Rightarrow x \in (27), y \in (27) \text{ or } x,y \in (3).$ 7(27) = (3) (27) is (3)-primary.

XXq, but x.x eq. g is primary with $\Upsilon(g) = (x,y) = p$. g is (x,y)-primary.

Not all prime powers are primary

Let
$$R = k[x, y, z]/(xy - z^2)$$
 and $P = (\overline{x}, \overline{z})$.

Prime.

 $P^2 = (\overline{x}^2, \overline{x}\overline{t}, \overline{t}^2) = (\overline{x}^2, \overline{x}\overline{t}, \overline{x}y)$

Not primary. $\overline{x}, \overline{y} \in P^2$ but $\overline{x} \notin P^2$ and $\overline{y} \notin P^2$, for any n .

 $P^2 = (\overline{x}) \cap (\overline{x}^2, \overline{y}, \overline{t})$.

Ideal Quotients of Primary Ideals

1)
$$x \in g$$
. $(g:x) = (1)$.

2)
$$x \notin p$$
. $(2:x) = 2$.

3)
$$x \notin g$$
. $(g:x)$ is a p -primary ideal, i.e. $r(g:x) = p$.

1st Uniqueness Theorem

Let $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ be a minimal primary decomposition of \mathfrak{a} . Let $\mathfrak{p}_i = \mathfrak{r}(\mathfrak{q}_i)$. Then

$$\{\mathfrak{p}_i:1\leq i\leq n\}=\{\mathfrak{r}(\mathfrak{a}:x)\ \mathsf{prime}:x\in A\},$$

hence are independent of the particular decomposition of \mathfrak{a} .

Proof

Consider
$$\Upsilon(a:x)$$
 prime, $x \in A$.
 $\Upsilon((Q_i):x) = \Upsilon((Q_i:x))$
 $= \bigcap_{i=1}^{n} \Upsilon(Q_i:x) = \bigcap_{s \in [n]} \gamma_i$. $\Upsilon(Q_i:x) = \begin{cases} (1) \\ \gamma_i \end{cases}$
 $= \gamma_i$ for some i .
Take $x_i \notin Q_i$, $x_j \in \bigcap_{i \neq i} Q_i$. $\Upsilon(a:x_i) = \gamma_i$.

The primary ideals are not unique

$$(x^2, xy) = (x) \cap (x^2, xy, y^2)$$

 $= (x) \cap (x^2, y)$
distinct
primary ideals
with radical
 (x,y) .

Def: Associated, Minimal/Isolated, Embedded Primes

Let $a \in A$ ideal, $a = \bigcap_{i=1}^{n} g_i$ minimal primary decomp. and $p_i = r(g_i)$.

- 1) {pit = associated primes of R.
- 2) subset minimal under inclusion are the minimal or isolated primes.
- 3) The complement of minimal primes are embedded primes.

Associated Primes of (0)

Suppose that (0) is decomposable.

Then, the associated primes of (0) constitute the set of zerodivisors.

$$D = \bigcup_{X \neq 0} (O: X) = \bigcup_{X \neq 0} \gamma(O: X)$$

$$= \bigcup_{X \neq 0} assoc. primes of Zero.$$

n = ninimal primes of zero. 3 nilpotents.

Localization & Primary Ideals

Let g be a p-primary ideal, SCA le a mult. subset. 1) $S \cap p \neq \emptyset$. $S = S^{-1}A$. $s.e.Snp \Rightarrow s^n e.Sng \Rightarrow s^n e.Sng = (1)$ 2) $Snp = \emptyset$. Sq is Sp-primary. with contraction (pre-image) q.

2nd Uniqueness Theorem

Any embedded prime comes with minimal primes it contains.

Let $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ be a minimal primary decomposition of \mathfrak{a} , and let $\{\mathfrak{p}_{i_1}, \ldots, \mathfrak{p}_{i_m}\}$ be an isolated set of prime ideals of \mathfrak{a} . Then $\mathfrak{q}_{i_1} \cap \cdots \cap \mathfrak{q}_{i_m}$ is independent of the decomposition.

In particular, the isolated primary components are uniquely determined by \mathfrak{a} .

embedded primary components are not uniquely determined.