Commutative Algebra: Noetherian Rings

Dr. Zvi Rosen

Department of Mathematical Sciences, Florida Atlantic University

Outline

Operations Preserving Noetherian Condition

Hilbert Basis Theorem

Noetherian \implies All Ideals have Primary Decomposition

Recall- Def: Noetherian

- (1) ascending chain condition on ideals: $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ stationary.
- & Maximal condition on ideals:

 Any collection of ideals has a maximal element.
- 3) All ideals are finitely generated.

These equiv. conditions characterize a Noetherian ring:

Homomorphisms

Let A be a Noetherian ring. \$\Phi: A = B \quad \text{surj. homomorphism of rings. Then B Noetherian.}

Proof B=A/a. Ideals of B
are in order-preserving bijection with
ideals of A containing a

-> Since A satisfies maximal condition,
so does B.

Finitely-Generated Modules

Let $A \subseteq B$, A Noetherian, B finitely-generated as an A-module. Then B is a Noetherian ring.

Proof: B f.g. A-module => Noetherian as an A-module.

Any A-submodule of B is finitely generated. Since every B-submodule is an A-submodule, these are f.g.

= B Noetherian.

Localization

Let A be a Noetherian ring. SEA mult. subset. Then SA is also Noetherian.

Proof: Ideals of S'A arc in order-preserving bijection with the ideals of A not neeting S. A satisfies maximal cond => S'A has maximal condition.

Localization

David Hilbert

Hilbert Basis Theorem

Let A be a Noetherian ring. Then, A[x] is also Noetherian.

Proof

Take a \subseteq A[x]. WTS: a is finitely-generated.

Define in(f) = coefficient of the highest power of x in f.

ina=fin(f), feaf ideal in A.

b, $c \in in \ a = f_b = bx' + ..., f_c = cx^s + ... \in a$.

rzs. $f_b + \chi^{r-s} f_c \in \alpha \Rightarrow b + c \in \alpha$.

Proof

ina CA ideal = ina f.g.

 $=) in \alpha = \langle a_1, \dots, a_n \rangle.$

 $\Rightarrow \exists f_1, ..., f_n \text{ s.t. } f_i = \alpha_i x^{r_i} + lower order + erms.$

finitely many polynomials => max?r; \{ = m \\ \text{will be finite.}

Given $g \in A$, $g = f + \tilde{g}$, where $f \in \langle f_1, ..., f_m \rangle$, $deg(\tilde{g}) < m$.

Proof If deglg) < m, we are done. Suppose degly) 3m. Then, g = ax + lower-order terms, k7m a = Siciai, cieA f = \(\frac{\sigma}{\chi} c_j \chi^{k-v_j} f_j\) has leading term axk. $g = f + \tilde{g}$ $deg(\tilde{g}) < deg(g)$ Repeating inductively, & will have deg Proof

$$a = \langle f_1, ..., f_n \rangle + a \cap M$$
 $M = \langle 1, \times, \times^2, ..., \times^{m-1} \rangle$ A-module

and $f.g.$ A-module \Rightarrow Noetherian as $A[X]$ -mod.

 $\Rightarrow f.g.$ by $(g_1, ..., g_k)$
 $A \subset A[X]$ is generated by (f_1, g_1)
 $\Rightarrow a f.g.$ $\Rightarrow A[X]$ Noetherian $A[X]$

Corollary: F.g. Algebras over Noetherian rings

A[x] Noetherian.

Induction: A[x,,,,xn] Noetherian.

A[x],,,xn]/I Noetherian.

Lemma: Irreducible Decomposition

Def: ideal $a \subseteq A$ is irreducible if $a = \{ n \in A = \}$ or $a = \{ G \in A = \}$.

Lemma Let A be Noetherian. Every ideal a C A can be written as an intersection of finitely many irred. ideals. (irreducible decomposition).

Lemma: Irreducible Decomposition

Proof: Suppose not .. A Noetherian - the set of ideals without irred decomp must have a maximal element. Consider a of this type. a note irreducible = a = b nc with 12a, 62a. a maximal => 6 and C have irred decomp. = a has irred decomp => ==

Lemma: Irreducibles are Primary

Proof Take a $\subseteq A$ irreducible. A Noetherian. $A \subseteq A$ primary \iff $(0) \subseteq A/a$ primary. WTS: (0) irreducible \implies (0) primary. $\times y \in (0) \sim Show y = 0$ or $x^h = 0$ for some $n \neq 0$.

Assume $y \neq 0$. Then consider $ann(x) \subseteq ann(x^2) \subseteq ...$ ascending chain.

 $\exists n \quad \text{S.t.} \quad \text{ann}(x^n) = \text{ann}(x^{n+1}) = \dots$

Lemma: Irreducibles are Primary

Claim:
$$(x^n) \cap (y) = (0)$$
.
Suppose not. Then $a \neq 0$, $a \in (x^n)$
and $a \in (y)$. $a = by \Rightarrow ax = 0$.
 $a \in (x^n) \Rightarrow a = cx^n \Rightarrow cx^{n+1} = 0$.
 $\Rightarrow c \in ann(x^{n+1}) \Rightarrow c \in ann(x^n) \Rightarrow a = 0$.
(a) irreducible $\Rightarrow (x^n) = 0$
 $\Rightarrow (a) \Rightarrow (a)$

Theorem

Let A be a Noetherian ring. Any ideal ACA has a primary decomposition.