Commutative Algebra: Two Ideal Theorems

Dr. Zvi Rosen

Department of Mathematical Sciences, Florida Atlantic University

The Two Theorems on Ideals

Chinese Remainder Theorem

Prime Avoidance Lemma

Defns: Direct Product, Coprime Ideals

Let $A_1,..., A_n$ be rings. $A_1 \times ... \times A_n = \{(x_1,..., x_n) \mid x_i \in A_i \}$ with componentwise multiplication & addition. Called "direct product".

Let
$$a, k \in A$$
 (deals.
 a, k are coprime if $a+k=(1)$.

Chinese Remainder Theorem

Proposition 1.10 (Atiyah-MacDonald)

Let A be a ring with $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subseteq A$ ideals. Define a homomorphism $\phi : A \to \prod_{i=1}^n (A/\mathfrak{a}_i)$ by the rule $\phi(x) = (x + \mathfrak{a}_1, \ldots, x + \mathfrak{a}_n)$.

- 1. If a_i , a_j are coprime whenever $i \neq j$, then $\prod a_i = \bigcap a_i$.
- 2. ϕ is surjective \iff $\mathfrak{a}_i, \mathfrak{a}_j$ are coprime whenever $i \neq j$.
- 3. ϕ is injective $\iff \bigcap \mathfrak{a}_i = (0)$.

Proof: $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$

$$WTS: A_1A_2 = A_1 \cap A_2.$$

similarly,
$$\alpha_1\alpha_2 \subseteq \alpha_2$$

=) $\alpha_1\alpha_2 \subseteq \alpha_1 \cap \alpha_2$.

$$=$$
) $a_1 a_2 \subseteq a_1 \cap a_2$

$$(a_1 \cap a_2)(a_1 + a_2) = (a_1 \cap a_2)a_1 + (a_1 \cap a_2)a_2$$

Proof: $\prod a_i = \bigcap a_i$ $(a_1 a_2) a_1 + (a_1 a_2) a_2 \leq a_1 a_2$ $\Rightarrow (a_1 a_2) \leq a_1 a_2$

Let
$$n > 2$$
.
 $Ta_i = (Ta_i) a_n$, $n = n-1$
 $Ta_i = (Ta_i) a_n$

Apply induction hypothesis b = Tiai = Tiai.

WTS: and = annb, sufficient: 9n, & coprime

Proof: $\prod_{n=1}^{n} \mathfrak{a}_i = \bigcap \mathfrak{a}_i$

$$f = \prod_{i=1}^{n-1} a_i$$
 For each i , $\exists x_i \in a_i, y_i \in a_n$
such that $x_i + y_i = 1$ $y_i \equiv 1 - x_i$ (ai)

 $\Rightarrow (1-x) + x = 1 \in a_1 + a_2 \Rightarrow coprime$ =) a; a; oprime for i +j. (F) Enough to find some X s.t. $\phi(x) = (1,0,...,0)$ 2 = i = N Ju; e a, , Vi Ca;

Proof: ϕ is surjective $\iff \mathfrak{a}_i, \mathfrak{a}_i$ coprime

 $\exists \exists x \quad x \equiv 1 \mod a_1, \quad x \equiv 0 \mod a_2.$

 $(1-x) \in a_1 \qquad x \in a_2$

 $(1,0,...0) \in Im(\phi)$

Proof: ϕ is surjective \iff $\mathfrak{a}_i, \mathfrak{a}_j$ coprime

Such that
$$u_i + v_i = 1$$
.
 $v_i = 1 - u_i \Rightarrow v_i = 1$ (a_i) .
 $f(v_i) = 1$ (a_i) and $f(u_i)$ $f(u_i) = 1$
 $f(u_i) = 1$ $f(u_i)$ and $f(u_i)$ $f(u_i)$

Proof: ϕ is injective $\iff \bigcap \mathfrak{a}_i = 0$

$$\phi$$
 injective \Leftrightarrow ker $(\phi) = 0$.

$$ker(\phi) = \{x \mid x \in a_i, 1 \leq i \leq n\}$$

Application: \mathbb{Z}

$$27720 = 5 \times 7 \times 8 \times 9 \times 11$$

= $2^{3} \times 3^{2} \times 5 \times 7 \times 11$
 $\mathbb{Z}/27720\mathbb{Z} \simeq \mathbb{Z}/8 \times \mathbb{Z}/9 \times \mathbb{Z}/5 \times \mathbb{Z}/7 \times \mathbb{Z}/11$.
 $N \leftarrow (n_{1}, n_{2}, n_{3}, n_{4}, n_{5})$

CS Applications.

Application: k[x], field k.

$$k[x]/f(x-a_1) \simeq k[x]/(x-a_1) \simeq k[x]/(x-a_1) \times \cdots \times k[x]/(x-a_n)$$
 $p(x) \leftarrow (b_1, ..., b_n) \in k^n$
Lagrange interpolation.

Prime Avoidance Lemma

Proposition 1.11(i) (Atiyah-MacDonald)

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

A Sharper Version

Lemma 3.3 (Eisenbud)

Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \subseteq A$ be prime ideals and let \mathfrak{a} be an ideal contained in $\bigcup_{i=1}^n \mathfrak{p}_i$. Suppose either that:

- 1. A contains an infinite field, OR
- 2. all but two of the p_i are prime.

Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

Proof: Infinite field

Lemma A vector space over an inf. field cannot be a finite union of proper subspaces.

Given k CA, every ideal is a k-vector space, so a must be inside one of the pi

Proof: Infinite field

Proof of Lemma: Suppose V = ÜW; sit. no Wij can be omitted. ∃xeW,, s.t. x & W; i+1. JyEVIWI. Consider {x+dy: a & kf. This is contained in $V \Rightarrow$ each is in some $W_i \Rightarrow X + \alpha_1 y$, $X + \alpha_2 y \in W_j$ $\alpha_1 \neq \alpha_2$ $<_{1}(X+<_{1}y)-<_{1}(X+<_{2}y)=(<_{1}-<_{1})\times\in W_{1}$ $\Rightarrow \in .$

Proof: all but two p_i are prime

$$h = 1 : a \in \bigcup_{i=1}^{n} p_i = a \in p_i$$
.

Induction: assume all pri's are necessary so no proper subunion contains a.

Proof: all but two p_i are prime

n72: Suppose p_i is prime. As before, there is $x_i \in p_i$ s.t. $x_i \notin p_i$ for all $j \neq i$.

Application

Let R be a Noetherian ring, M a finitely generated nonzero R-module. Every ideal consisting entirely of zerodivisors on a module M annihilates some element of M.

Idea of Proof

The zerodivisors are contained in the union of "associated primes" of a module. So this ideal must be contained in one such associated prime.