ECCO 2012: Positive Grassmannian. Exercises Lecture 1

1. Recall the notation and setup of the **Plücker relations**: let $[n] := \{1, 2, ..., n\}$ and $\binom{[n]}{k} = \{I \mid I \subset [n], |I| = k\}$. For a $k \times n$ matrix A and $I = \{i_1, ..., i_k\} \subset [n]$, let $\Delta_I(A) = \det(k \times k)$ submatrix in column set I). Then the Plücker relations are: for any $i_1, ..., i_k, j_1, ..., j_k \in [n]$ and r = 1, ..., k:

$$\Delta_{i_1,\dots,i_k,j_1,\dots,j_k} = \sum \Delta_{i'_1,\dots,i'_k} \Delta_{j'_1,\dots,j'_k}, \tag{0.1}$$

where we sum over all indices i_1, \ldots, i_k and j'_1, \ldots, j'_k obtained from i_1, \ldots, i_k and j_1, \ldots, j_k by switching $i_{s_1}, i_{s_2}, \ldots, i_{s_r}$ $(s_1 < s_2 < \ldots < s_r)$ with j_1, j_2, \ldots, j_r .

Prove the Plücker relation.

2.

(a) Recall that the **Fano plane** is an example of a non-realizable matroid in $\binom{[7]}{3}$ (it is illustrated in Figure 1).

Check that the Fano plane satisfies the Exchange Axiom and that it is non-realizable.

Figure 1: The Fano plane.

(b) Two other examples of non-realizable matroids are the **Pappus matroid** and the **Desargues matroid** (illustrated in Figures 2 3) which come from Pappus and Desargues theorems respectively. We require that the 3 points that are supposed to be collinear in Pappus/Desargues theorems are linearly independent in the corresponding Pappus/Desargues matroids.

Check that these are non-realizable matroids.

Figure 2: The Pappus matroid

3. Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ be a Young diagram that fit inside the $k \times n$ rectangle. Consider the subset S_{λ} of the Grassmannian $\mathbf{Gr}(k,n)$ over the finite field \mathbb{F}_q that consists of elements that can

Figure 3: The Desargues matroid

be represented by $k \times n$ matrices A with 0s outside the shape λ . For example, for n=4 and k=2, $S_{(4,1)}$ is the subset of elements of $\mathbf{Gr}(2,4)$ representable by matrices of the form $\begin{pmatrix} * & * & * & * \\ * & 0 & 0 & 0 \end{pmatrix}$.

Find a combinatorial expression for the number of elements of $S_{(2k,2k-2,...,2)}$ (over \mathbb{F}_q). Show that it is a polynomial in q.

4. Recall the notation of matroid polytopes. We denote by e_1, \ldots, e_n the coordinate vectors in \mathbb{R}^n . Given $I = \{i_1, \ldots, i_k\} \in {[n] \choose k}$ we denote by e_I the vector $e_{i_1} + e_{i_2} + \cdots + e_{i_k}$. Then for any $\mathcal{M} \subseteq {[n] \choose k}$ we obtain the following convex polytope

$$P_{\mathcal{M}} = \operatorname{conv}(e_I \mid I \in \mathcal{M}) \subset \mathbb{R}^n,$$

where conv means the convex hull. Note that $P_{\mathcal{M}} \subset \{x_1 + x_2 + \dots + x_n = k\}$ so dim $P_{\mathcal{M}} \leq n - 1$. The polytope $P_{\mathcal{M}}$ is a **matroid polytope** if every edge of $P_{\mathcal{M}}$ is parallel to $e_j - e_i$, i.e. edges are of the form $[e_I, e_J]$ where $J = (I \setminus \{i\}) \cup \{j\}$.

Prove that $P_{\mathcal{M}}$ is a matroid polytope if and only if \mathcal{M} satisfies the **Exchange Axiom:** For all $I, J \in \mathcal{M}$ and for all $i \in I$ there exists a $j \in J$ such that $(I \setminus \{i\}) \cup \{j\} \in \mathcal{M}$.