COMBINATORIAL HOPF ALGEBRAS - ECCO'12 EXERCISES LECTURE 1

1. Antipode

Let H be a Hopf algebra and let S be its antipode.

(1). Show that

$$S(qh) = S(h)S(q)$$

for $g, h \in S$.

- (2). Show that if H is commutative or cocommutative, then $S^2 = I_H$.
- (3). Let $F = Hom_{Alg}(H, k)$ be the set of algebra morphisms from H to the ground field k. Show:
 - (a) F is a group under the convolution product \star where

$$g \star f := m_k(g \otimes f)\Delta_H$$

(b) For $f \in F$ we have

$$f \circ S = f^{-1}$$

- 2. Homogeneous and elementary symmetric functions
- (1). Given that

$$h_n = S((-1)^n e_n) = -\sum_{i=1}^n (-1)^i h_{n-i} e_i$$

write h_i in terms of the e_i 's for i = 1, ..., n.

(2). Use the identity

$$\sum_{i=0}^{m} e_i t^i = \prod_{i=1}^{m} (1 + tx_i)$$

to write an expression for $e_i(x_1, \ldots, x_m)$.

- Give an expression for $h_i(x_1, \ldots, x_m)$ using (1) and (2). [Hint: Guess and prove].
- Define the algebra map

$$\omega: Sym \to Sym$$

such that $\omega(e_i) = h_i$.

- Prove that ω is an involution.
- Conclude that $Sym \cong \mathbb{Z}[h_1, h_2, \dots]$.

- Compute $S(h_i)$.
- Compute $\Delta(h_i)$.
- (5). Show the following:
 - (a) $h_k(x_1, \dots, x_n) = h_k(x_2, \dots, x_n) + x_1 h_{k-1}(x_1, \dots, x_n)$.
 - (b) $h_k(x_k, \dots, x_n) \in \langle Sym_n^+ \rangle$.
 - (c) Using the order $x_1 > \cdots > x_n$ show that $LM(h_k(x_k, \ldots, x_n)) = x_k^k$ where LM(f) denotes the *leading monomial* of the polynomial f. [Note: Given two monomials $x_1^{a_1}x_2^{a_2}\cdots x_l^{a_l}$ and $x_1^{b_1}x_2^{b_2}\cdots x_k^{b_k}$, we say that $x_1^{a_1}x_2^{a_2}\cdots x_l^{a_l} \geq x_1^{b_1}x_2^{b_2}\cdots x_k^{b_k}$ whenever $(a_1,\ldots,a_l) \geq_{lex} (b_1,\ldots,b_k)$. The leading term LM(f) is the maximum of the monomials in f under the order \geq .]
 - (*) Show that the set $\{h_i(x_i,\ldots,x_n)\}_{i\in[n]}$ is a Groebner basis for $\langle Sym_n^+\rangle$. Conclude that the dimension of the vector space $\mathbb{Z}[h_1,\ldots,h_k]/\langle Sym_n^+\rangle$ is n!.