COMBINATORIAL HOPF ALGEBRAS - ECCO'12 EXERCISES LECTURE 2

- (1). Can you come up with a product and/or coproduct structure on your favorite combinatorial object (graphs, trees, matroids, ranked posets,...)? Can you use those operations to induce a Hopf algebra structure? If you succeed, in which sense is this a CHA?
- (2). Define the Schur function $s_{\lambda}(\mathbf{x})$ as

$$s_{\lambda}(\mathbf{x}) = \sum_{T} \mathbf{x}^{T}$$

summing over all the semistandard Young tableaux of shape λ . Give an expansion for the Schur function s_{λ} in monomials, where:

- $\lambda = (2)$
- $\lambda = (2, 1)$
- $\lambda = (2, 2)$
- $\lambda = any partition$. Give a combinatorial description of the coefficients appearing on this expansion.
- (3). Compute $s_{(2)}(\mathbf{x})s_{(2)}(\mathbf{x})$ in terms of Schur functions. What is the coefficient of $s_{(4)}(\mathbf{x})$?
- (4). Let V be a finite dimensional vector space and let GL(V) the space of invertible linear transformations of V. A representation of a group G is a homomorphism $\phi: G \to GL(V)$.

Let $G = S_n$, $V = \mathbb{C}$ and ϕ such that $\phi(\sigma) = (1)$ for all $\sigma \in S_n$.

Show that this is a representation of S_n , called the trivial representation \mathbb{I}_{S_n} . Show that \mathbb{I}_{S_n} is irreducible in the sense that it does not contain non-trivial subspaces invariant under the action of S_n .

- Using the fact that the trivial representation corresponds to the Schur function $s_{(n)}(\mathbf{x})$ and knowing that

$$\operatorname{Ind}_{S_2 \times S_2}^{S_4}(\mathbb{I}_{S_2} \times \mathbb{I}_{S_2}) := \bigoplus_{\sigma_i \in S_4/(S_2 \times S_2)} k \{\sigma_i \cdot (S_2 \times S_2)\}$$

where the sum is over a set of coset representatives $\{\sigma_i\}$, find a subspace of $\operatorname{Ind}_{S_2 \times S_2}^{S_4}(\mathbb{I}_{S_2} \times \mathbb{I}_{S_2})$ that is isomorphic to the trivial representation of S_4 . What is the decomposition (in irreducibles) of this induced representation? (hint: use (3)).

- What is the multiplicity of the trivial representation \mathbb{I}_{S_4} in this decomposition?