Notes were taken by Zvi Rosen. Thanks to Alejandro Morales for providing Figure 2.

Notation 1.1. Let CHA denote a combinatorial Hopf algebra.

A combinatorial Hopf Algebra is a graded Hopf algebra.

Definition 1.2. A graded algebra is a vector space

$$H = \bigoplus_{n \ge 0} H_n, \quad H_0 = k.$$

This latter condition makes the algebra connected. We have a multiplication:

$$m: H \otimes H \to H$$
.

Using the formalism of the tensor product presupposes distributive laws, linearity, etc. We also have a unit:

$$u: k \to H, \quad 1 \mapsto 1.$$

The graded version of these maps are as follows:

$$m_{k,l}: H_k \otimes H_l \to H_{k+l}.$$

 $u: k \to H_0.$

Maps should be associative and respect the unity, as in Figure 1.

FIGURE 1. Multiplication and Unit.

Definition 1.3. A graded, connected bialgebra also has a co-algebra structure; it is represented by the tuple:

$$\left(H = \bigoplus_{n \ge 0} H_n, m, u, \Delta, \epsilon\right)$$

The last two operations are associated to the coalgebra. We have comultiplication:

$$\Delta: H \to H \otimes H, \qquad a \mapsto \sum a_{(1)} \otimes a_{(2)},$$

as well as a counit:

$$\epsilon: H \to k$$
.

The graded versions are as follows:

$$\Delta_{k,l}: H_{k+l} \to H_k \otimes H_l, \qquad \Delta_n = \sum_{k+l=n} \Delta_{k,l}.$$

These operations satisfy the previous diagrams, but with all arrows reversed (so they are coassociative, and respect counity).

For a bialgebra, we require Δ , ϵ to be algebra homomorphisms, i.e.

$$\Delta(ab) = \Delta(a)\Delta(b).$$

Multiplying the comultiplied tensors involves a twisting operation τ , which may require some cleverness; for a graphical description, see Figure 2. These operations satisfy the diagram in Figure 3.

Figure 2. Δ as an Algebra Homomorphism.

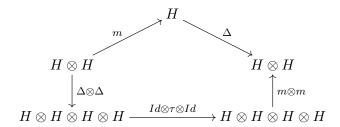


FIGURE 3. Δ , m, and τ .

Definition 1.4. A bialgebra H (= the tuple $\left(H = \bigoplus_{n\geq 0} H_n, m, u, \Delta, \epsilon\right)$) is Hopf, if there exists a map $S: H \to H$, such that it satisfies the diagram of Figure 4. S is called the antipode.

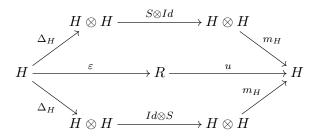


FIGURE 4. The Antipode S.

Remark 1.5. Why do we care about an antipode? The set

$$\{\varphi: H \to A\} = \operatorname{Hom}_{Alg}(H, A), \qquad A \text{ an algebra}$$

has a multiplication (convolution).

Given $f, g \in \text{Hom}_{Alg}(H, A)$ we convolute them satisfying the diagram in Figure 5. In fact, $\operatorname{Hom}_{Alg}(H, A)$ is a group under convolution with identity $u_A \circ \epsilon_H$ and inverse

$$f^{(-1)} = f \circ S.$$

Lecture: Nantel Bergeron

$$H \xrightarrow{f*g} A$$

$$\Delta_H \downarrow \qquad \uparrow m_A$$

$$H \otimes H \xrightarrow{f \otimes g} A \otimes A$$

Figure 5. Convolution.

Proposition 1.6. The antipode satisfies:

$$S(ab) = S(b)S(a).$$

Moreover, if H is commutative or cocommutative (see Figure 6), then

$$S^2 = Id$$
.

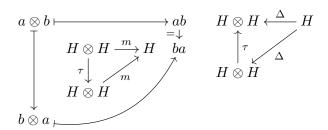


Figure 6. Commutativity and Co-commutativity.

Proposition 1.7. For a Graded Hopf Algebra, we have a formula for the antipode. First,

$$S(1) = 1.$$

For $h \in H_n, n > 0$,

$$\Delta(h) = 1 \otimes h + \sum_{a_{(1)} \neq 1, \deg(a_{(1)}) > 0} a_{(1)} \otimes a_{(2)}.$$

$$m \circ (Id \otimes S) \circ \Delta(h) = u \circ \epsilon(h) = 0.$$

$$m \circ (Id \otimes S) \left[1 \otimes h + \sum_{\deg(a_{(1)}) > 0} a_{(1)} \otimes a_{(2)} \right].$$

$$= S(h) + \sum_{\deg(a_{(1)}) > 0} a_{(1)} S(a_{(2)}) = 0.$$

Note that $d(a_{(2)}) < n$. Therefore,

$$S(h) = -\sum_{\deg(a_{(1)})>0} a_{(1)}S(a_{(2)}).$$

If H is a connected, graded bialgebra, then there is a unique antipode S (given by this formula).

Example 1.8 (Symmetric functions). Let $Sym = k[e_1, e_2, \ldots]$, and let $deg(e_i) = i$. The multiplication is well-known. As a basis, we can take the set of monomials $e_1^{a_1}e_2^{a_2}\cdots$, where finitely many a's are nonzero. For notation, we denote a monomial by a weakly descending sequence of variables in the product, e.g.

$$e_1^2 e_3 e_4^3 = e_4 e_4 e_4 e_3 e_1 e_1 \rightarrow e_{444311}.$$

This gives us the set:

$$\{e_{\lambda}\}_{\lambda \vdash n > 0},$$

where $\lambda \vdash n$ indicates that λ is a partition of n. $\lambda = (\lambda_1, \dots, \lambda_l)$, where each $\lambda_i > 0$, the sum of the λ 's is n and, the sequence is weakly decreasing.

When n = 0, $\lambda = \emptyset \Rightarrow e_0 = e_\emptyset = 1$. So, Sym is a graded algebra, with

$$Sym = \bigoplus_{n \geq 0} k\{e_{\lambda}\}_{\lambda \vdash n}.$$

Sym is also a biaglebra. Sym is a free algebra (commutative).

$$\Delta(e_i) = \sum_{k+l=i} e_k \otimes e_l.$$

We need to check that it is coassociative (simply requires viewing a 3-part partition as an iterated 2-part partition in 2 ways).

What is the antipode S? Let $S(e_i) = (-1)^i h_i$ (we define h_i in this way).

$$\Delta(e_i) = 1 \otimes e_i + \sum_{k+l=i, k>0} e_k \otimes e_l.$$

$$\Rightarrow (-1)^{i}h_{i} = S(e_{i}) = -\sum_{k=1}^{i} e_{k}S(e_{i-k}) = -\sum_{k=1}^{i} e_{k}(-1)^{i-k}h_{i-k}.$$

What do we get when we take $S(h_i)$?

We now commence with four definitions of Combinatorials Hopf Algebras:

Definition 1.9. (1) We have a singled out basis such that the structure is positive, i.e. $\{e_{\lambda}\}$ such that:

$$e_{\lambda}e_{\mu} = \sum c_{\lambda\mu}^{\nu}e_{\nu},$$

$$\Delta(e_{\nu}) = \sum d_{\lambda\mu}^{\nu} e_{\lambda} \otimes e_{\mu},$$

where the coefficients are positive.

(2) Realization:

$$H \hookrightarrow k[[x_1, x_2, \ldots]] \text{ or } k\langle\langle x_1, x_2, \ldots\rangle\rangle.$$

(3) Representation Theory:

$$H \cong K \left(\bigoplus_{n \geq 0} A_n \right).$$

(4) Via characters:

 $\chi: H \to k$, an algebra homomorphism.

2. Wednesday, June 20, 2012

Yesterday, we saw:

- (1) Graded Hopf Algebras.
- (2) Antipode
- (3) Commutative or Co-commutative implies $S^2 = Id$.
- (4) $Sym = k[e_1, e_2, \ldots]$, with antipode $h_i = S((-1)^i e_i)$. Because S is an involution, we can also write $Sym = k[h_1, h_2, \ldots]$.
- (5) Four definitions of the Combinatorial Hopf Algebra.

Consider Sym via definition (1): Given a singled-out basis with a positive structure, we want to make a rule for the construction of these objects. We want to explain the structure constants with combinatorial rules

$$e_{\lambda}e_{\mu} = e_{\lambda \cup \mu}.$$

$$\Delta(e_{\lambda}) = \sum e_{\mu} \otimes e_{\nu}.$$

Consider Sym via definition (2). We truncate the variables, so we work in the "symmetric polynomials" $k[x_1, x_2, \ldots, x_n]$. S_n acts on R in the following way: $\sigma P(x_1, \ldots, x_n) = P(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$.

$$\Lambda_{(n)} = \{ P \in R : \sigma.P = P, \ \forall \sigma \in S_n \} = R^{S_n}.$$

$$\Rightarrow \forall P, Q \in \Lambda_{(n)}, PQ \in \Lambda_{(n)}.$$

2.1. Bases for $\Lambda_{(n)}$.

(1) **Orbit of a Monomial.** Start with a monomial, then add in all monomials that result from S_n action (without multiplicity.

Example 2.1. $x_1^2x_3x_4$. The orbit includes: $x_1^2x_2x_3, x_1^2x_2x_4, x_1x_3^2x_4, \ldots$ The distinguished member of this set is $x_1^2x_2x_3$, since its exponent vector is a weakly decreasing sequence. This is the leading monomial in the lexicographic order.

We define

$$m_{\lambda} = \sum_{x^{\alpha} \text{ in orbit of } x^{\lambda}} x^{\alpha}.$$

We can project elements of $\Lambda_{(n+1)} \to \Lambda_{(n)}$, with

$$m_{\lambda} \mapsto \begin{cases} m_{\lambda}, & \ell(\lambda) \leq n \\ 0, & \text{otherwise.} \end{cases}$$

Taking the inverse limit of this sequence of projections, we obtain:

$$Sym = \lim_{n \to \infty} \Lambda_{(n)} \subset k[[x_1, x_2, \ldots]].$$

The basis is $\{m_{\lambda}\}_{{\lambda}\vdash m\geq 0}$, where, as above,

$$m_{\lambda} = \sum_{x^{\alpha} \text{ in orbit of } x^{\lambda}} x^{\alpha}.$$

(2) Elementary Symmetric Functions.

Theorem 2.2 (Newton).

$$\Lambda_{(n)} = k[e_1, e_2, \dots, e_n],$$

where e_i is defined as follows:

$$\prod_{i=1}^{n} (1 + x_i t) = \sum_{i=0}^{m} e_i t^i.$$

Again, we project elements of $\Lambda_{(n+1)} \to \Lambda_{(n)}$, with

$$e_i \mapsto \begin{cases} e_i, & i \le n \\ 0, & \text{otherwise.} \end{cases}$$

Taking the inverse limit, we have another basis for Sym.

Remark 2.3. Presentation of $Sym \subseteq k[[x_1, x_2, \ldots]]$ (Introduction of the m basis).

$$Sym \to \Lambda_{(n)} \subseteq k[x_1, \dots, x_n].$$

$$\langle \Lambda_{(n)}^+ \rangle = \langle f \in \Lambda_{(n)} : f(0, 0, \dots, 0) = 0 \rangle.$$

$$= \langle e_1, e_2, \dots, e_n \rangle = \langle h_1, h_2, \dots, h_n \rangle.$$

$$\dim_k(k[x_1, x_2, \dots, x_n] / \langle h_1, \dots, h_n \rangle) = n!.$$

Remark 2.4. When we consider the realization $Sym \subseteq k[[x_1, x_2, \ldots]]$, the multiplication is clear – just the usual multiplication of series. Comultiplication, is less obvious.

$$f \in Sym, f = f(x_1, x_2, ...) \Rightarrow f(Y + Z) = f(y_1, y_2, ..., z_1, z_2, ...) = \sum_{i=1}^{n} f^{(i)}(Y) f^{(2)}(Z).$$

So, we define the comultiplication:

$$\Delta(f) = \sum f^{(1)} \otimes f^{(2)}.$$

In that spirit, for

$$e_m = \sum_{1 \le i_1 < i_2 < \dots < i_m} x_{i_1} \cdots x_{i_m},$$

we have:

$$e_{m}(y_{1}, y_{2}, \dots, z_{1}, z_{2}, \dots) = \sum_{\substack{1 \leq i_{1} < \dots < i_{l} \\ 1 \leq j_{1} < \dots < j_{m-l}}} y_{i_{1}} \cdots y_{i_{l}} z_{j_{1}} \cdots z_{j_{m-l}}.$$

$$= \sum_{l=0}^{m} e_{l}(Y) e_{m-l}(Z).$$

Therefore, we define the comultiplication:

$$\Delta(e_m) = \sum_{l=0}^m e_l \otimes e_{m-l}.$$

Now, we consider Sym via definition (3), namely representation. Our claim is that Sym and the representation of S_n are linked.

2.2. Crash Course in Representation Theory.

Definition 2.5. Let G be a finite group. A representation is a map $\varphi: G \to GL(V)$, where V is a vector space of dimension $d \Rightarrow GL(V) \cong GL_d(k)$.

Definition 2.6. A subspace $W \subset V$ is invariant if:

$$W \subseteq V$$
 s.t. $\forall g \in G, \varphi(g)(w) \in W, \forall w \in W$.

In character 0, we can decompose V into invariant subspaces

$$V = W \oplus W'$$

$$\Rightarrow \varphi(q) = \varphi_{W}(q) \oplus \varphi_{W}'(q).$$

• Every representation decomposes into irreducible representations, i.e. there is no $W \subset V \neq 0$ or V invariant under the group action.

• There are finitely many irreducible representations (up to isomorphism) in bijection with the conjugacy classes of G.

For S_n , the conjugacy classes are in bijection with $\lambda \vdash n$ (partitions of n).

Representation of "Tower" of S_n , i.e. $\bigoplus_{n>0} S_n$.

{Irreducible Representations of $\bigoplus S_n$ } $\longleftrightarrow \lambda \vdash n \geq 0$.

 $\Rightarrow k(\bigoplus_{n\geq 0} S_n) = k\{\text{Irr. Reps}\} \cong Sym$, as a graded vector space.

Operations on $k(\bigoplus_{n>0} S_n)$: Let V be any representation of S_n .

$$V = \sum c_{\lambda} X^{\lambda},$$

where X^{λ} is the basis of the irreducible representations, and $c_{\lambda} \in \mathbb{Z}_{>0}$.

Let V be a representation of S_n and W be a representation of S_m ; then, V*W is a representation of S_{n+m} .

Let H be a subgroup of G, and V a representation of H. Then,

$$Ind_H^GV = "V \otimes_H kG".$$

$$V * W = Ind_{S_n \times S_m}^{S_{m+n}} V \otimes W$$

 $V*W=Ind_{S_n\times S_m}^{S_{m+n}}V\otimes W.$ Again, supposing H is a subgroup of G with W a representation of G. Then

$$Res_H^G W = W|_H.$$

If V is a representation of S_n , then

$$\Delta(V) = \sum_{l=0}^{n} Res_{S_{l} \times S_{n-l}}^{S_{n}} V = \sum_{l=0}^{n} V^{(1)} \otimes V^{(2)}.$$

The Mackey Formula gives us a relation that corresponds to:

$$\Delta(V * W) = \Delta(V) * \Delta(W).$$

So $K(\bigoplus_{n>0} S_n)$ is a Hopf Algebra. Specifically,

$$K(\bigoplus_{n>0} S_n) \xrightarrow{\sim} Sym.$$

with the special basis:

$$X^{\lambda} \longrightarrow s_{\lambda}$$
, the Schur function.

3. Thursday, June 21, 2012

3.1. **Duality.** Given a graded Hopf algebra $H = \bigoplus_{n>0} H_n$, we have a graded dual $H^* = \bigoplus_{n>0} H_n^*$ where $H_n^* = \operatorname{Hom}_k(H_n, k)$.

This duality is explained in the diagram in Figure 3.1.

Figure 7. Duality of Algebras.

 H^* is also a Hopf algebra, provided that the H_n are finite-dimensional.

(1) For multiplication on H^* , we can use Δ on H:

$$f * g = m_k(g \otimes f) \circ \Delta_H$$

satisfying the diagram in Figure 8.

$$H \xrightarrow{g*f} k$$

$$\Delta_H \downarrow \qquad \uparrow m_k$$

$$H \otimes H \xrightarrow{g \otimes f} k \otimes k$$

FIGURE 8. Multiplication on the Dual.

(2) For comultiplication $H^* \longrightarrow H^* \otimes H^*$, we use m_H .

$$\Delta(f) = \varphi^{-1} \circ m_H^*(f).$$

See Figure 9 for a description.

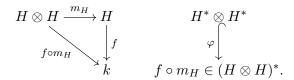


Figure 9. Comultiplication on the Dual.

(3) The unit is obtained from the unit $u: k \longrightarrow H$:

$$\Rightarrow H^* \xrightarrow{u^*} k^* \xrightarrow{\sim} k.$$

(4) Similarly, the counit is obtained from the counit $\epsilon: H \to k$:

$$\Rightarrow k \xrightarrow{\sim} k^* \xrightarrow{\epsilon^*} H^*.$$

Given that the dual to the Hopf algebra is a Hopf algebra, what is Sym^* ? We have several bases of Sym: $\{e_{\lambda}\}, \{h_{\lambda}\}, \{m_{\lambda}\}, \{s_{\lambda}\}.$ Let us consider $h_{\lambda}^*: Sym \to k$, which maps

$$h_{\mu} \mapsto \begin{cases} 1, & \mu = \lambda \\ 0, & \text{otherwise.} \end{cases}$$

An alternative definition looks at the inner product that gives $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda\mu}$. Then,

$$h_{\lambda} := \langle ---, m_{\lambda} \rangle.$$

When we dualize e_{λ} , we get an ugly basis f_{λ} , so we ignore it. On the other hand, h_{λ} and m_{λ} dualize to each other, and s_{λ} dualizes to itself. This condition is so special in Hopf algebras that it uniquely characterizes tensor powers of Sym (Zelevinsky).

3.2. **NSym.** Let us describe a new Hopf algebra.

Definition 3.1. Let $NSym = k\langle H_1, H_2, \ldots \rangle$ be the free associative algebra on the variables H_i , where the degree of $H_i = i$.

Monomials are words in the H_i 's:

$$H_{\alpha} = H_{\alpha_1} H_{\alpha_2} \cdots H_{\alpha_l}.$$

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_l), \alpha_i > 0, \alpha_1 + \alpha_2 + \dots + \alpha_l = m = |\alpha| \Rightarrow \alpha \models m.$$

A basis of NSym is $\{H_{\alpha}\}_{\alpha \models m \geq 0}$. This is a bialgebra with comultiplication:

$$\Delta(H_m) = \sum_{i=0}^m H_i \otimes H_{m-i}.$$

Therefore, NSym is Hopf, with $S(H_i) = (-1)^i E_i$.

Now we consider the dual of NSym, i.e. $Nsym^*$. In NSym the multiplication is non-commutative, while the comultiplication is cocommutative; therefore, in the dual $NSym^*$, the multiplication will be commutative, while the comultiplication will be non-cocommutative.

$$NSym^* \stackrel{\sim}{\to} QSym.$$

 $H^*_{\alpha} \mapsto M_{\alpha}.$

QSym is the ring of Quasi-symmetric functions (given by a realization):

$$QSym \subseteq k[[x_1, x_2, \dots]].$$

$$M_{\alpha}(x_1, x_2, \dots) := \sum_{i_1 < i_2 < \dots < i_l} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_l}^{\alpha_l}.$$

Remark 3.2. The action of S_n on $k[x_1, x_2, \ldots, x_n]$:

$$s_i * x^{\alpha} = \begin{cases} x^{\alpha}, & \alpha_i \neq 0 \text{ and } \alpha_i \neq 0 \\ s_i(x^{\alpha}), & \text{otherwise.} \end{cases}$$
$$\Rightarrow \sigma * (fg) \neq (\sigma * f)(\sigma * g).$$

You can check that $M_{\alpha} = \sum x^{\beta}$, where β runs over the orbit of the polynomial $x^{a}lpha$ under the (*).

$$\Rightarrow QSym_{(n)} = k[x_1, x_2, \dots]^{S_n(*)}, \qquad QSym = \lim_{\longleftarrow} QSym_{(n)}.$$

In QSym,

$$M_{\alpha}M_{\beta} = \sum_{\gamma \in \alpha \widetilde{\Pi} \widetilde{\Pi} \beta} M_{\gamma}.$$

This $\widetilde{\coprod}$ is a quasi-shuffle, where you can intermix the two words, or superimpose letters from the two words.

Example 3.3. The normal shuffle III:

$$(1)\coprod(2,1) = 121 + 211 + 211.$$

The quasi-shuffle III

$$(1)\widetilde{\coprod}(2,1) = 121 + 211 + 211 + 31 + 22.$$

For our comultiplication, we take $\Delta(M_{\alpha}) = \sum_{\alpha=\beta \cdot \gamma} M_{\beta} \otimes M_{\gamma}$.

Working with

$$QSym \subseteq k[[x_1, x_2, \ldots]], \qquad QSym_{(n)} \subseteq k[x_1, \ldots, x_n],$$

we may look at

$$\dim(k[x_1,\ldots,x_n]/\langle QSym_{(n)}^+) = \dim(TL_n),$$

a very surprising fact, where TL_n = Temperley-Leib Algebra $\cong kS_n/(\ker \arctan of *)$.

Question 3.4. Given an algebra A_n obtained by generators acting faithfully on $k[x_1, x_2, \dots, x_n]$, define

$$k[x_1, ..., x_n]^{A_n} = \{ p \in k[x_1, ..., x_n] : g_i P = P \ \forall g_i \text{ generator} \}.$$

When do we have

$$\dim(k[x_1,\ldots,x_n]/\langle k[x_1,\ldots,x_n]^{A_n^+}\rangle) = \dim A_n?$$

Type C Hopf Algebra:

$$NSym \cong K\left(\bigoplus_{n\geq 0} H_n(o)\right)$$
 (Projective representation of $H_n(o)$).

$$QSym \cong G\left(\bigoplus_{n\geq 0} H_n(o)\right)$$
 (Finitely generated module of $H_n(o)$).

3.3. **NCSym.** We now describe another Combinatorial Hopf Algebra.

 $NCSym \subseteq k\langle\langle x_1, x_2, \ldots \rangle\rangle$, the non-commutative k-algebra of series. Specifically,

$$NCSym = \lim_{\longleftarrow} k\langle x_1, x_2, \dots, x_n \rangle^{S_n}.$$

NCSym has the basis $M_A = \sum w$, where w is in the orbit of a word w(A). We write $w = x_{i_1} x_{i_2} \cdots x_{i_m}$.

w is also a function: $[1, 2, \ldots, m] \rightarrow \{1, 2, \ldots\}.$

$$\nabla(w) = \{w^{-1}(i) : i \in \{1, 2, \ldots\}\} \setminus \emptyset.$$

This is a set partition of $\{1, 2, ..., m\}$; therefore, orbits are in 1-to-1 correspondence with $A \vdash \{1, 2, ..., m\}, m \ge 0$. (Note: these are set partitions of the set of integers).

A basis of NCSym is given by

$$\{M_A\}_{A\vdash [m], m\geq 0}$$

Question 3.5. What is the dimension of

$$k\langle x_1, x_2, \dots, x_n \rangle / \langle NCSym^+ \rangle$$
?

Now, we examine a Hopf Algebra defined by its character. See Figure 10 for a description.

$$H - - - \frac{\Phi}{-} - \rightarrow QSym$$

$$\varphi(m_{\alpha}) = m_{\alpha}(1, 0, 0, \ldots)$$

$$= \begin{cases} 1 & \alpha = (n), n \ge 0. \\ 0 & \text{otherwise} \end{cases}$$

FIGURE 10. QSym, defined by Character.

4. Friday, June 22, 2012

A graded Hopf algebra can also be thought of as a set of vector spaces spanned by constructing combinatorial objects, i.e.

$$H = \bigoplus_{n \ge 0} H_n = \bigoplus_{n \ge 0} H[n].$$

Then, we can define an exponential generating function:

$$H(z) = \sum_{n>0} \dim H[n] \frac{z^n}{n!}.$$

- (1) Multiplication: $H[n] \otimes H[m] \to H[n+m]$, sending $a \otimes b \mapsto a * b \uparrow^n$, where \uparrow^n sends a combinatorial object on $\{1, \ldots, m\}$ to an object on $\{n+1, \ldots, n+m\}$.
- (2) Comultiplication: $\Delta: H[n] \to \bigoplus_{k+l} H[k] \otimes H[\ell]$, sending $a \mapsto \sum_{S \subseteq \{1,...,n\}} st(a|S) \otimes st(b|S)$. Here st is a function sending a set S to the set of integers from 1 to |S|.
- (3) Antipode: $S(h) = -\sum_{h_{(1)} \neq 1} h_{(1)} S(h_{(2)}) = \sum_{h_{(1)}, h_{(2)}} (-1)^{\square} h_{(1)} h_{(2)}.$

Definition 4.1. Given a finite set S, a species gives a graded vector space of structures. For example,

 $S \longrightarrow H[S]$, a finite-dimensional vector space of a certain construction on S.

 $S \longrightarrow G[S]$, the space of graphs on S.

Not only do we know how to construct H[S], but we have a natural transformation that takes

$$[\varphi:S\stackrel{\sim}{\to}T]\longrightarrow [H[\varphi]:H[S]\stackrel{\sim}{\to}H[T].$$

In other words, a species is a functor from FiniteSets to VectorSpaces.

Example 4.2. (1) E, the "Exp" species, given by $E[S] = k\{S\}$.

(2) Π , "Set Partitions", is given by $\Pi[S]$ = the span of set partitions on S. For example,

$$\{a,b,c\} \longrightarrow \Pi[\{a,b,c\}] \text{ with basis } \{\{a,b,c\}\}, \{\{a\},\{b,c\}\}, \dots, \{\{a\},\{b\},\{c\}\}\}.$$

4.1. **Hopf Monoids.** Consider graded vector spaces:

$$H = \bigoplus_{n>0} H_n, T = \bigoplus_{n>0} T_n.$$

We have the tensor product:

$$H \otimes T = \bigoplus_{d \geq 0} \left(\bigoplus_{n+m=d} H_n \otimes H_m \right).$$

Multiplication: $m: H \otimes H \to H$.

Graded Multiplication: $m_{n,m}: H_n \otimes H_m \to H_{n+m}$.

We similarly define the tensor product of species:

Definition 4.3. Let A and B be two species. Then, we write $A \bullet B$ is the species such that

$$A \bullet B[S] = \bigoplus_{I+J=S} A[I] \otimes B[J].$$

where "+" is the disjoint union.

Definition 4.4. We define the multiplication map $m: H \bullet H \to H$, by taking for all I+J=S,

$$m_{I,J}: H[I] \otimes H[J] \longrightarrow H[S], \text{ with } a \otimes b \mapsto a * b.$$

Definition 4.5. We define the Hopf Monoid:

$$(H, m, u, \Delta, \varepsilon, S).$$

where H is a species, m is a multiplication map from $H \bullet H \to H$ (satisfying figure 11), u is the unit mapping $\mathbf{1} \to H$, where:

$$\mathbf{1}[S] = \begin{cases} k & S = \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

The comultiplication $\Delta: H \to H \bullet H$ is defined by

$$\Delta_S = \sum_{I+J=S} \Delta_{I,J}$$
, where.

$$\Delta_{I,J}: H[S] \to H[I] \otimes H[J]$$
, sending $a \mapsto a|_I \otimes a|_J$.

m and u are associative and unital. Δ and ε are coassociative and counital. Compatibility of Δ on m is given by the diagram in Figure 12.

$$\begin{array}{ccc} H \bullet H \bullet H \xrightarrow{Id \bullet m} H \bullet H \\ \downarrow m \bullet Id & & \downarrow m \\ H \bullet H \xrightarrow{m} H \end{array}$$

FIGURE 11. Associativity of the Monoid.

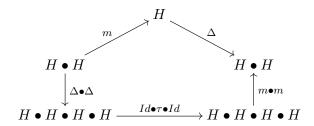


FIGURE 12. Compatibility of Δ and m.

Example 4.6. Consider the species of linear orderings L[S]. For any I + J = S,

$$m_{I \ I}: H[I] \otimes H[J] \to H[I+J],$$

sending $a \otimes b \mapsto a \bullet b$, the concatenation product. For instance, if $I = \{2, 4, 5, 7\}$ and $J = \{1, 3, 6\}$, with order a = 5274 and b = 136, then $a \bullet b = 5274136$.

$$\Delta_{I,J}: H[S] \to H[I] \otimes H[J],$$

sending a to its restrictions $a|_{I} \otimes a|_{J}$. For instance, if $I = \{1, 5\}$ and $J = \{2, 3, 4\}$, with order a = 43125, then $\Delta_{I,J}(a) = 15 \otimes 432$.

Furthermore, the species respects all diagrams, so L is a Hopf Monoid.

$$H \bullet H \xrightarrow{S \bullet Id} H \bullet H$$

$$\downarrow D \\ H \bullet H \xrightarrow{Id \bullet S} H \bullet H$$
all $I + J = S$,

and for all
$$I + J = S$$
,

$$H[I] \otimes H[J] \xrightarrow{Id \otimes S} H[I] \otimes H[J]$$

$$\Delta_{I,J} \uparrow \qquad \qquad m_{IJ} \downarrow$$

$$H[S] \xrightarrow{u \circ \varepsilon} H[S]$$
where $u \circ \varepsilon = \begin{cases} 0 & S \neq \varnothing \\ 1 & S = \varnothing \end{cases}$.

FIGURE 13. The Antipode S.

The graded antipode requirement is found in Figure 13. The antipode map is defined for each set S.

Take $a \in H[S]$ such that $S \neq \emptyset$. We have a recursive formula:

$$S(a) = -\sum_{I+J=S} a|_{I}S(a|_{J}).$$

$$S: H \to H$$
, and $S_S: H[S] \to H[S]$.

 $a \in H[\emptyset] = k \text{ and } S_{\emptyset}(1) = 1.$

$$H \xrightarrow{K} \bigoplus_{n \geq 0} H[n].$$

$$H \xrightarrow{\bar{K}} \bigoplus_{n \geq 0} H[n]_{S_n}.$$

This latter species is associated to the unlabeled case – since structures are invariant under label-shuffles:

$$H[n]_{S_n} = H[n]/\langle x - H[\sigma](x) : \forall x \in H[n], \forall \sigma : [n] \stackrel{\sim}{\to} [n] \rangle.$$

Passing to Generating Functions:

$$\bigoplus_{n\geq 0} H[n] \longrightarrow H(z) = \sum_{n\geq 0} \dim(H[n]) \frac{z^n}{n!}.$$

$$\bigoplus_{n>0} H[n]_{S_n} \longrightarrow H(z) = \sum_{n>0} \dim(H[n]_{S_n}) z^n.$$

The Hopf Algebras that we discussed can be related to species: for example, QSym can be obtained via $\mathcal{L} \circ \mathcal{E}^+$.