OPEN PROBLEM SESSION **ECCO 2012**

- (1). (Federico Ardila) For a composition $c = (c_1, \ldots, c_k)$ we are interested in the com**position polynomial** $g_c(q)$, which can be given at least three definitions.
 - (a.) If we write $\mathbf{t^{c-1}} := t_1^{c_1-1} \cdots t_k^{c_k-1}$, where $t = (t_1, \dots, t_k)$, then

$$g_c(q) := \int_q^1 \int_q^{t_k} \cdots \int_q^{t_2} \mathbf{t^{c-1}} dt_1 \cdots dt_k.$$

- (b.) Let $\beta_i = c_1 + \dots + c_i$ for $i = 0, \dots, k$. Let $h(x) = a_0 + a_1 x + \dots + a_k x^k$ be the polynomial of smallest degree that passes through the k+1 points (β_i, q^{β_i}) on the curve $y = q^x$. Here the coefficients a_i are functions of q. Then $a_k = (-1)^k g_c(q)$.
- (c.) It is the volume of a combinatorially defined polytope, as explained in [1]. Some examples are:
 - $-g_{(1,1,1,1)}(q) = \frac{1}{24}(1-q)^4.$ $-g_{(2,2,2,2)}(q) = \frac{1}{384}(1-q)^4(1+q)^4.$ $-g_{(1,2,2)}(q) = \frac{1}{120}(1-q)^3(8+9q+3q^2).$ $-g_{(2,2,1)}(q) = \frac{1}{120}(1-q)^3(3+9q+8q^2).$ - $g_{(5,3)}(q) = \frac{1}{120}(1-q)^2(5+10q+15q^2+12q^3+9q^4+6q^5+3q^6).$

and it is a fact that

$$g_c(q) = (1 - q)^k f_c(q)$$

where $f_c(q)$ is a polynomial with positive coefficients. [1, Theorem 6.5]

Questions:

- (I) These polynomials originally arose as volumes of polytopes; why do they also appear in the polynomial interpolation of exponential functions?
- (II) Are the coefficients of $f_c(q)$ unimodal? Are they log-concave?
- (III) After suitable rescaling, do the coefficients of $f_c(q)$ count nice combinatorial objects?
- (2). (Criel Merino) Let

$$M_{r,d} := \{ \text{ monomials over } z_1, z_2, \dots, z_d \text{ of degree } \leq r \}.$$

A set of monomials $C_{r,d}$ of degree r over the variables z_1, z_2, \ldots, z_d is a covering set for $M_{r-1,d}$ if any monomial in $M_{r-1,d}$ is a divisor for some monomial in $C_{r,d}$. Now let

 $f_{r,d} := \min \text{ size of a covering set for } M_{r-1,d}.$

Conjecture:

- (I) $f_{r,d} = \#$ (aperiodic necklaces with r black beads and d-r white beads).
- (II) $f_{r,d} = f_{d,r}$ [Remark that this is a consequence of the previous conjecture].

(3). (Bernd Sturmfels) Let \mathcal{F} be a family of non-trivial subsets of [n]. The collection \mathcal{F} defines a family C of affine hyperplane arrangements in \mathbb{R}^{n-1} as follows:

$$C = \{ \sum_{i \in F} x_i = 0 \}_{F \in \mathcal{F}}$$

Question: How many bounded regions does this family have? This may be intractable in general, but an answer for particular families \mathcal{F} would be interesting. Now, let P be a poset on [n] and put

$$\mathcal{L}[P] = \{ \text{linear extensions of } P \}.$$

Question: Determine the kernel of the map

$$\phi: \mathbb{R}[p_{\pi}|\pi \in \mathcal{L}[P]] \to \mathbb{R}(x_1, \dots, x_n)$$

where p_{π} is the probability of observing the permutation π in $\mathcal{L}[P]$ and

$$\phi(p_{\pi}) = \prod_{i=1}^{n} \frac{1}{x_{\pi(1)} + \dots + x_{\pi(i)}}$$

- (4). (Nantel Bergeron) The space NCSym is a subspace of $k\langle\langle x_1, x_2, \dots \rangle\rangle$. For n fixed the following questions are open:
 - (I) Is $\langle NCSym_{(n)}^+ \rangle$ finitely generated?
 - (II) Is the dimension of the vector space $k\langle x_1,\ldots,x_n\rangle/\langle NCSym_{(n)}^+\rangle$ finite?
 - (III) What would be the representation theory of S_n on this quotient?
 - (IV) Same questions are unsolved for the space NCQSym.
- (5). (Mauricio Velasco) Let

$$\mathcal{H}_d^n = \{ I \subseteq R = k[x_1, \dots, x_n] \mid \dim_k(R/I) = d \}$$

This is the Hilbert scheme on d points in affine n-space. Now let

$$\varphi(d,n) := \sup_{I} \dim_{k}(Hom(I,R/I))$$

Question: What is $\varphi(3, n)$?

(6.) (Alejandro Morales) We denote by \mathfrak{S}_n the group of permutations on $[n] = \{1, 2, \ldots, n\}$. We write permutations as words $w = w_1 w_2 \cdots w_n$ where w_i is the image of w at i. We also identify each permutation w with its permutation matrix, the $n \times n$ 0-1 matrix with ones in positions (i, w_i) . We think of the 1s in a permutation matrix as n non-attacking rooks on $[n] \times [n]$. Given a subset B of $[n] \times [n]$ we look at **rook placements** C of n non-attacking rooks on B.

Recall the notion of the **strong Bruhat order** \prec on the symmetric group [2, Ch. 2]: if t_{ij} is the transposition that switches i and j, we have as our basic relations that $u \prec u \cdot t_{ij}$ in the strong Bruhat order when $\operatorname{inv}(u) + 1 = \operatorname{inv}(u \cdot t_{ij})$, and we extend by transitivity. Let $[w, w_0]$ denote the interval $\{u \mid u \succ w\}$ in the strong Bruhat order where w_0 is the largest element $n n - 1 \dots 21$ of this order.

$$\begin{bmatrix} R_{35142} & H_L(35142) \\ 0 & 0 & \underline{a_{13}} & a_{14} & a_{15} \\ 0 & 0 & a_{23} & 0 & \underline{a_{25}} \\ \underline{a_{31}} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & 0 & a_{43} & \underline{a_{44}} & a_{45} \\ a_{51} & \underline{a_{52}} & a_{53} & a_{54} & a_{55} \end{bmatrix} \begin{bmatrix} H_L(35142) \\ 0 & 0 & \underline{a_{13}} & a_{14} & a_{15} \\ 0 & 0 & a_{23} & a_{24} & \underline{a_{25}} \\ \underline{a_{31}} & a_{32} & a_{33} & a_{34} & 0 \\ \underline{a_{41}} & a_{42} & a_{43} & \underline{a_{44}} & 0 \\ \underline{a_{51}} & \underline{a_{52}} & 0 & 0 & 0 \end{bmatrix}$$

FIGURE 1. Matrices indicating the (i) Rothe diagram and (ii) left hull of w = 35142. The matrix entries $a_{i w_i}$ are in red.

Example 1. If w = 3412, then the permutations in \mathfrak{S}_4 that succeed w in the Bruhat order are $\{3412, 3421, 4312, 4321\}$.

In [4], Sjöstrand gave necessary and sufficient conditions for $[w, w_0]$ to be equal to the set of rook placements of a skew shape associated to w. Namely, the **left hull** $H_L(w)$ of w is the smallest skew shape that covers w. Equivalently, $H_L(w)$ is the union over non-inversions (i, j) of w of the rectangles $\{(k, \ell) \mid w_i \leq k \leq w_j, i \leq \ell \leq j\}$. See Figure 1 for an example of the left hull of a permutation.

Theorem 2 ([4, Cor. 3.3]). The Bruhat interval $[w, w_0]$ in \mathfrak{S}_n equals the set of rook placements in the left hull $H_L(w)$ of w if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

A natural family of diagrams is the collection of **Rothe diagrams** of permutations, which appear in the study of Schubert calculus. The Rothe diagram R_w of a permutation w is a subset of $\{1, 2, ..., n\} \times \{1, 2, ..., n\}$ whose cardinality is equal to the number of inversions of w; it is given by

$$R_w = \{(i,j) \mid 1 \le i, j \le n, \ w(i) > j, \ w^{-1}(j) > i\}.$$

See Figure 1 for some examples of Rothe diagrams. The following is a special case of two conjectures in [3, Sec. 6.].

Conjecture 3 ([3]). Fix a permutation w in \mathfrak{S}_n . We have that the number of rook placements in the left hull $H_L(w)$ equals the number of rook placements in the Rothe diagram R_w if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

REFERENCES

- [1] F. Ardila and J. Doker. Lifted generalized permutahedra and composition polynomials.
- [2] A. Björner and F. Brenti. Combinatorics of Coxeter groups. Graduate Texts in Mathematics, Springer, 2005.
- [3] A.J. Klein, J.B. Lewis, and A.H. Morales. Counting matrices over finite fields with support on skew young diagrams and complements of rothe diagrams. arXiv:1203.5804, 2012.
- [4] J. Sjöstrand. Bruhat intervals are rooks on skew Ferrers boards. J. Combin. Theory, Ser. A, 114(7):1182–1198, 2007.