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1. August 27, 2015

1.1. Basic Neuro Facts. Pyramidal neurons have structures like this cartoon:
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Neurons fire action potentials when they receive enough “coincident” inputs from synapses onto
their dendrites. The Hodgkin-Huxley model gives a threshold intensity of inputs in a time window
which will trigger it to fire. Typically, many excitatory inputs are needed near-simultaneously in
order for a neuron to fire. θ denotes the threshold value (usually measured as voltage, in units of
mV).

Neurons may influence each other with different weights. For instance one neuron may be
connected to another at multiple synapses. Size of the synapse/dendrite may also influence sig-
nal intensity - this is called synaptic strength. [Jeff Lichtmann’s laboratory images neurons and
synapses to count connections.]

Synaptic plasticity is the ability of a synapse to change its strength. Hebb’s rule states that
neurons that fire frequently together have the synapse strengthened.

An action potential is “all-or-none”; this is usually true but photoreceptor neurons for example
have a graded response. The firing rate of a neuron describes the number of action potentials per
unit time (unit: Hz). Many computational network models reflect the firing rate, NOT the specific
action potentials. LIF “Leaky-integrate-and-fire”.

Neurons are either excitatory or inhibitory in their effect on other neurons. The inputs can be
varied, but outputs are all positive or all negative. Some inhibitory signals go directly into the
soma - these are called shunting inhibition.

1.2. McCulloch-Pitts Model of the Neuron. The first abstract mathematical model of a neu-
ron was the McCulloch-Pitts model. It was introduced in 1943, when Boolean logic was “in the
air”. The idea is that neurons can perform Boolean logic operations AND, NOT, OR.
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The neuron is then pictured as a node with n inputs (inbound directed edges) all with edge
weight 0 or 1, and one output of weight 0 or 1. Call the inputs x1, . . . , xn and the output y.

Rule for transforming inputs to the output:

y = H

(
n∑
i=1

xi − θ

)
H(z) =

{
0 z < 0

1 z ≥ 0

Recall that θ denotes our threshold.

Definition 1.1. A Boolean function is a function f : {0, 1}n → {0, 1}.

The choice of θ selects a particular fθ performed by the M-P neuron.

Example 1.2. Consider the case of two inputs, with θ = 2. This executes the logical “AND”.
If θ = 1, then the M-P neuron executes logical “OR”. “XOR” is not possible with a single M-P
neuron without inhibition (since 2 > 1).

Question 1.3. Which Boolean functions can be implemented by a single M-P neuron?

Definition 1.4. We say that a boolean function is monotone increasing in the i-th variable (input
xi) if for any set of values x1, . . . , x̂i, . . . , xn ∈ {0, 1} we have f(x1, . . . , 0, . . . , xn) ≤ f(x1, . . . , 1, . . . , xn).

Similarly f is monotone decreasing in the i-th variable (input xi) if for any set of values
x1, . . . , x̂i, . . . , xn ∈ {0, 1} we have f(x1, . . . , 0, . . . , xn) ≥ f(x1, . . . , 1, . . . , xn).
f is unate if it is monotone increasing or decreasing in that variable.

XOR is not unate in either variable; therefore, it cannot be realized by an M-P neuron.

Exercise 1.5. (1) Show that any B.F. f : {0, 1}n → {0, 1}, represented by an M-P neuron is
monotone increasing in each variable.

(2) Find an example of a B.F. that is monotone increasing in each variable but cannot be
implemented by a single M-P neuron. (i.e. show that the converse is false.)

Linear-threshold neurons or “perceptrons” will be discussed next week.

2. September 1, 2015

2.1. Linear-threshold neurons. Let x1, . . . , xn denote the input layer which may take values in
{0, 1}. Let w1, . . . , wn ∈ R be weights on the edges from xi → y. These can be positive (excitatory)
or negative (inhibitory). These functions then induce a value of 0 or 1 for y by the function

y = H

(
n∑
i=1

wixi − θ

)
.

where H is the Heaviside function, and θ is a threshold.
Like M−P neurons, Linear-threshold neurons represent Boolean functions: f : {0, 1}n → {0, 1}.

Recall that a Boolean function is unate if it is monotone increasing or decreasing on each variable
xi.

Lemma 2.1. Every Boolean function that can be represented by a linear-threshold neuron is unate.

Proof. Pick xi and show it’s either monotone increasing or decreasing.

Case 1. wi ≥ 0. Heaviside functions are monotone increasing, so increasing the input will increase
the output.

Case 2. w1 < 0. Decreasing the input decreases the output.

�

Question 2.2. Is every unate Boolean function representable by an LT neuron?
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Answer: NO.

Example 2.3. Let f(x1, . . . , x4) = (x1∧x2)∨ (x3∧x4). These are binary Boolean operators “OR”
and “AND”. This function is monotone increasing on all neurons.

However, we claim that it is not realizable as a linear threshold neuron.

Proof: Assume f(x1, . . . , x4) = H
(∑4

i=1wixi − θ
)

. We know w1+w2−θ ≥ 0 and w3+w4−θ ≥
0. If we take max(w1, w2) + max(w3, w4), this is guaranteed to exceed θ.

2.2. Single-layer Feed-forward Network of Linear-threshold Neurons. Below is the schematic
for networks of this type:

x1

x2

xn

y1

y2

ym

Input
Layer

Output
Layer

w11

wnm

Each output is a linear-threshold neuron.

yi = H

 n∑
j=1

wijxj − θi


We can summarize w as a row vector:

w(i) = (wii, . . . , win) ∈ Rn. W = [wij ].

⇒ yi = H
(
w(i) · x− θi

)
Remark 2.4. • wij is the weight from j → i.

• θi is the threshold of the i-th LT neuron; in particular, θi ∈ R.
• H acting entry wise on column vectors, we can write y = H(Wx − θ). Note that W is an
m× n matrix.

The set of all LT neurons in a single-layer feed-forward network corresponds to a hyperplane
arrangement in Rn (m hyperplanes).

Example 2.5. n = 2 and m = 3. So we need a 3× 2 matrix W and a 3× 1 matrix Θ.

W =

w11 w12

w21 w22

w31 w32

 . Θ =

θ1θ2
θ3

 .

Let us fix values for these:

W =

 1 2
2 −2
−1 0

 . Θ =

 2
1
−1/2

 .
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The hyperplane arrangement will be in R2 with three half-spaces. The equations are as below:

y1 = H(x1 + 2x2 − 2)
y2 = H(2x1 − 2x2 − 1)
y3 = H(x1 − 1/2)

The values of these outputs depend on the inputs of x1, x2. In Figure 1, we draw the lines as
well as each point corresponding to all possible 0− 1 values for x1, x2.

x2

x1

Figure 1. Regions corresponding to output layer responses.

If we take the outputs corresponding to these inputs, then we get four responses: 001, 010, 101, 100
(Note that values on a line are considered to trigger the neuron). In some settings, we also allow
nonnegative inputs for x; then every region in the positive quadrant counts as an output of the
system. Note that the point (1/2, 0) actually contributes a new response.

3. September 3, 2015

3.1. Comment on Homework #1. The assignment was to find an example of a monotone
increasing Boolean function that cannot be realized by a single M-P neuron. Some people suggested
the following function:

f : {0, 1}2 −→ {0, 1}
(0, 0) 7→ 0
(1, 0) 7→ 0
(0, 1) 7→ 1
(1, 1) 7→ 1

In some sense, this is correct, since the Heaviside function f(x) = H(x1 + x2 − θ) does not fit
this form. But, the edge weights in the feed-forward network are actually allowed to be 0 as well;
therefore this function is realizable.

Another suggested example is:

f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3)
Indeed this is not realizable as an MP neuron, but it is realizable as an LT neuron. Not MP: since
the AND forces all edge weights to 1 and the threshold to 2 which would imply f(1, 0, 1) = 1.
However, it is LT since you can give edge 2 weight 2 and make the threshold 3.
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3.2. The code of a single-layer feed-forward network of LT neurons. A code is a subset
C ⊂ {0, 1}n. n is called the length of the code. An element of C is called a codeword.

Example 3.1 (n = 3).

C = {000, 100, 110, 111}

Remark 3.2. A popular field of study is error-correcting codes. The idea is that C ( {0, 1}n, not
all 0− 1 strings are legal codewords. For example,

A → 0010
B → 0101
C → 1000

Sending these strings through a noisy channel may change a small number of bits, but since there is
some minimal Hamming distance between words, we can correct the error. The Hamming distance
between codewords c1, c2 ∈ {0, 1}n is defined as

dH(c1, c2) = |{i ∈ [n]|(c1)i 6= (c2)i}|.

The art/science of creating good codes is to pick a set of codewords with higher mutual Hamming
distance. Claude Shannon working around 1948 is one of the founders of information theory and
coding theory.

The neural code, i.e. the way in which patterns of neural activity represent information (stimuli).
A stimulus motivates some collection of neurons to fire, giving us a codeword.

Question 3.3. What kinds of codes C ⊆ {0, 1}n can be realized by a single-layer network of LT
neurons?

In the last class, in Figure 1, we saw a half-plane arrangement giving 7 codewords - all codewords
of length 3 except 111.

But why should the possible codes be restricted at all?

Example 3.4. C = {0, 1}3 \ {001, 111}. The code has length 6.
Note that codewords for an LT network correspond to regions defined by intersections of half-

spaces. Regions corresponding must all be codewords are all convex.

Definition 3.5. A set X ⊂ Rd is convex if the line segment `p1p2 = {tp1 + (1 − t)p2 | t ∈ [0, 1]}
between any two points p1, p2 ∈ X is also fully contained in X.

In an LT network, neuron i has a corresponding half-space H+
i given by the side of Hi where i

fires.
The fact that codewords “come from” overlapping half-spaces (convex sets) creates constraints

on the possible codes. With this architecture, not all codes are possible.
Claim: C is not realizable with a single-layer LT network.

Proof. Let Ui = H+
i ∩ Rm≥0. U1, U2, U3 are all convex sets, assuming the network is realizable.

110 ∈ C ⇒ U1 ∩ U2 6= ∅
101 ∈ C ⇒ (U1 ∩ U3) \ U2 6= ∅
011 ∈ C ⇒ (U2 ∩ U3) \ U1 6= ∅

Since p1, p2 ∈ U3 and U3 is convex, `p1p2 ⊂ U3. Two possibilities (since both U1 and U2 are closed
sets [the argument also holds if both open]): `p1p2 either intersects U1 ∩U2 or goes outside U1 ∪U2.

But `p1p2 ⊂ U3 which means that either 111 or 001 are in the code. Contradiction. �
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Exercise 3.6 (Homework 2). (1) Let W be an n × m matrix for a single-layer feed-forward
network of LT neurons. Recall

yi = H

 m∑
j=1

wijxj − θi


Assume that W satisfies Dale’s Law: a fixed input neuron has all outgoing edge weights

positive or all negative. In terms of W , all columns are of the same sign.
Show that C ⊂ {0, 1}n for this network has a unique maximal codeword. In particular

∃ymax ∈ C such that ∀y ∈ C, all yi ≤ ymaxi ∀i ∈ [n].
(2) Find a new example of a code C ⊆ [0, 1]3 that is not realizable by single-layer LT network.

4. September 8, 2015

4.1. New Theme: Associative Memory Models. Last week, we discussed feed-forward (FF)
networks. This involved an input layer of neurons and an output layer of neurons. In multilayer
networks, there could be intervening layers between input and output. This is one type of model
for the visual system. For more information, see Rosenblatt’s work on perceptrons.

This week, we discuss recurrent networks, which are used in associative memory models. In
this setup, the connectivity graph can contain loops. A directed loop between two nodes can be
considered an undirected edge.

Remark 4.1. We distinguish between:

(1) Feedback in the network. Here the network is primarily feed-forward but there is some
feedback from later layers to earlier layers. One example is the model in Figure 2.

Retina Thalamus

Primary Visual
Cortex V1

Figure 2. Visual network with feedback

(2) (Local) recurrent networks. V1 CA3 of hippocampus
Local Area Local connectivity
Local circuits: Associative memory. Storage and recall. Encoding of sequences of neural

activity.
Neural computation: Partition completion Error Correction
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Figure 3. Recurrent Networks

The Hopfield Model was introduced by J.J. Hopfield, physicist by training, in a PNAS paper
in 1982. This paper catalyzed a migration of physicists into theoretical neuroscience. It modeled
“deep” questions about learning and memory in a simple mathematically tractable form.

In the 1980’s, experiments in neuroscience still focused largely on one neuron at a time, applying
stimuli to actual neurons in the brain. The ability to tackle questions at a network level was limited.
The mathematical model allowed researchers to gain some insights, prove theorems, and perform
numerical experiments.

4.2. Hopfield Model. We begin with Ingredients:

(1) A symmetric weight matrix J which is n× n, real valued.
(2) A vector of thresholds θ = (θ1, . . . , θn).

Remark 4.2. The symmetry is known to be biologically unrealistic. Reciprocal connections occur
more than expected by chance though not all the time. Values of Jij , Jji can never be exactly
equal! This does not model inhibition explicitly. Instead the effects of inhibition are implicit when
the value of Jij is negative.

The Hopfield model is a “toy model” that helps us imagine the space of possibilities for recurrent
network dynamics. It gives a qualitative picture of what might be going on.

Appendix E describes the prevailing ideas about memory networks. In the 90’s, the influential
ideas were Hebbian learning and cell assemblies. Even if it’s not an accurate description, it is still
informative.

Example 4.3. Consider a network on a graph G as in Figure 4.

1

3

2

5

4

J24 = J42 = 0

Figure 4. Example of a Hopfield network
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Set the value for all θ to be 1, and

Jij =

{
1 (ij) ∈ G
0 (ij) /∈ G

.

We consider the dynamics that update the state of the network at each time step.

Definition 4.4. A State of the network is a length n binary string x ∈ {0, 1}n; each index is labeled
xi ∈ {0, 1}. (E.g. (11001 indicates that neurons 1,2, and 5 are on).

Remark 4.5. Note on notation: In the 1982 paper, xi was taken to be in {−1.1}.

We also must consider update rate: starting from time t with state x(t) and pass to state x(t+1)
the new state.

For i = 1, . . . , n update by

xi = H(J (i)x− θi
where H is the Heaviside function, and J (i) is the i-th row of J .

There are several possibilities for the update:

(1) Asynchronous:
(a) In order: 1, 2, . . . , n.
(b) Randomly: Select i ∈ [n] randomly at each step.

(2) Synchronous. This can yield behavior that is not robust - disappears with asynchronous
updates.

Question 4.6. What does the network from our example do?

J =


0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0


Let us fix asynchronous ordered updates. Consider various initial states:

(1) xinit =
(
0 0 0 0 0

)T
= x(0). Any update returns the zero vector.

(2) x(0) =
(
0 1 1 0 0

)T
. The following series of updates happens:

0
1
1
0
0

 x1→


1
1
1
0
0

 x2→


1
1
1
0
0

 x3→


1
1
1
0
0

 x4→


1
1
1
0
0

 x5→


1
1
1
0
0

 x1→ · · ·

Thus the state
(
0 1 1 0 0

)T
is a fixed point. Note that (123) is a clique of G.

Recall: a clique of a graph is an all-to-all connected subgraph.

(3) x(0) =
(
1 1 1 1 0

)T
. The following series of updates happens:

1
1
1
0
1

 x1→


1
1
1
0
1

 x2→


1
1
1
0
1

 x3→


1
1
1
0
1

 x4→


1
1
1
1
1

 x5→


1
1
1
1
1

 x1→ · · ·
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Indeed, the state
(
1 1 1 1 1

)T
is another fixed point of the network, even though it

is not a clique.

5. September 10, 2015

5.1. Hopfield Model. Let J (or W ) be the synaptic weight matrix. Two options:

(1) J fixed: no changes to snypases.
(2) J dynamic: Jij is strengthened when neurons i, j are coactivated and Jij decays otherwise.

Synaptic Plasticity refers to changes in synaptic strength.
Mathematical Model:

(1) Learning phase – training J, θ. Memories get “stored” as attractors of the network via
modification of the weights Wij .

(2) Retrieval phase –
(a) Fix W .
(b) Provide an input to the network (initial condition x(0)).
(c) The network evolves to a steady state (attractor) yielding its output.

Learning Phase Retrieval Phase

time
evolution

Steady State

Figure 5. Hopfield Model with Dynamic Weights.

Question 5.1. What types of dynamics can occur in networks?
For example: Hopfield, variations, threshold-linear, etc.

Fact 5.2. Hopfield networks with symmetric J (or W ) and Jii = 0 always evolves to a steady state
(a fixed point attractor) for asynchronous updates.

Remark 5.3. There are two versions of the Hopfield model:

Version 1: xi(t+ 1) = H
(∑n

j=1 Jijxj(t)− θi
)

. Set xi ∈ {0, 1}, with asynchronous update.

Version 2: States Si ∈ {−1, 1}.

Si(t+ 1) = sgn

 n∑
j=1

WijSj

 , where sgn(x) =

{
+1 x > 0

−1 x ≤ 0

Exercise 5.4 (Homework 3). (1) Consider Version 2 of the Hopfield model. Design a symmet-
ric 2× 2 synaptic matrix W with nonnegative diagonal so that there is a sequence of states
– under synchronous update – that does not converge to any fixed point attractor.

(2) Design an asymmetric 2 × 2 matrix W with nonnegative diagonal s.t. there are no fixed
points (again, for synchronous update rule.)

9
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We return our attention to Version 1 of the Hopfield model.
Key Idea: An “energy” function for the network

(*) E(x) = −1

2

n∑
j=1

n∑
i=1

Jijxixj +
n∑
i=1

θixi

E is a function dependent on J, θ; x is the state of the network at a given time.
[See also the Ising Model, with a similar energy function.] Think of this function as a (discretized)

Lyapunov function.

Definition 5.5. For a dynamical system, a Lyapunov function is a function that evaluated at states
f(x) is always decreasing (non-increasing) along trajectories.

If you have such an “energy function” you know that your trajectories will converge to states
corresponding to minima of E(x). Idea: The network is optimizing something! It’s going to minima
of E(x).

Theorem 5.6. Consider Hopfield model (version 1), with update function

xi(t+ 1) = H

 n∑
j=1

Wijxj(t)− θi


where xi ∈ {0, 1} and asynchronous update. Then the energy function E(x) (*) is non-increasing
along trajectories of the dynamics.

Specifically, if x→ x′ in one time step, then E(x)−E(x′) ≥ 0, with equality holding if and only
if x = x′.

Proof. Because update is asynchronous, x and x′ can only differ in a single neuron. There exists k
such that xi = x′i for all i 6= k. Suppose xk 6= x′k. (If xk = x′k, the energies are equal.)

Compute:

E(x)− E(x′) =
(
−
∑n

j=1Wkjxkxj +
∑n

i=1 θixi

)
−
(
−
∑n

j=1Wkjx
′
kxj +

∑n
i=1 θixi

)
= −(xk − x′k)

∑n
j=1Wkjxj + (xk − x′k)θ

= −(xk − x′k)
(∑n

j=1Wkjxj − θk
)

= −(xk − x′k)ek,

where ek is the argument of the Heaviside function.
Cases:

(1) If x′k > xk then the sign of the first factor is negative, and the sign of ek is positive so the
total is positive.

(2) If x′k < xk then the sign of the first factor is positive, and the sign of ek is negative so the
total is positive.

�

Remark 5.7. Dynamical Systems Concepts – Multistability: The existence of multiple steady
states (fixed points), or stored memories. This only occurs in nonlinear dynamics (because of the
Heaviside function). Without the Heaviside function, all we would have is a system of linear ODEs,
which would have at most one fixed point, which would be stable or unstable.

6. September 17, 2015

Missed one class on Sep 15.
10
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6.1. Threshold-linear Networks. Today we are discussing the paper “Permitted and Forbidden
Sets in Symmetric Threshold-Linear Networks” by Hahnloser and Seung.

The system discussed has this form:

(*)
dxi
dt

= −xi +

 n∑
j=1

Wijxj + bi


+

Conditions are xi ≥ 0 i.e. x ∈ Rn≥0 the nonnegative orthant and bi ∈ R. τ is set to 1.

Differential equation, continuous time (vs. discrete time update rule) We will consider attractors
of this network for arbitrary b. Think: bi = ei − θi. External input minus threshold.

Notation 6.1. For ν ∈ Rn, we write ν ≥ 0 to indicate that νi ≥ 0 for all i ∈ [n]. I.e. ν ∈ Rn≥0
nonnegative orthant.

Question 6.2. Under what conditions can we guarantee that all trajectories (initialized with
x(0) ∈ Rn≥0 converge to a steady state)?

Theorem 6.3. Assuming W symmetric, the following are equivalent:

(1) All positive eigenvectors of all principal submatrices of I − W have positive eigenvalues.
The principal submatrices are defined by fixing the same set σ ⊆ [n] as the set of rows and
columns.

(2) I −W is co-positive:

xT (I −W )x > 0 ∀x ≥ 0, except x = 0.

(3) For all b ∈ Rn and all initial conditions, the dynamics of (*) converge to an equilibrium
point.

Proof of (2) ⇒ (3). Suppose I −W is co-positive. Strategy: Find a Lyapunov function that is
strictly decreasing under the dynamics (*) and is only 0 at steady states. How about this:

L = 1
2x

T (I −W )x− bTx

= 1
2

∑
x2i −

n∑
i,j=1

Wijxixj −
n∑
i=1

bixi.

Compute the derivative:

L̇ =
dL

dt
= ẋT (x−Wx− b)
= (−x+ [wx+ b]+)T (x− (wx+ b))

This computation depends on symmetry of W .
Let y = Wx+ b, and let y+ = [Wx+ b]+ = [y]+. Then, substituting:

L̇ = −(x− y+)T (x− y) = −
n∑
i=1

(x− y+)i(x− y)i.

To prove this derivative is negative we can show that each summand (xi−y+i )(xi−yi) is positive.
We go case by case:

Case 1 y+i = yi ≥ 0. Then (xi − yi)2 ≥ 0.

Case 2 yi ≤ 0⇒ y+i = 0. Then,

(xi − y+i )(xi − yi) = xi · (xi − yi) ≥ 0,

since xi and −yi are both nonnegative.
11
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What is left? We still need to show that the equilibria of L (i.e. where L̇ = 0) correspond to

steady states. Specifically, we must show that L̇ = 0⇒ ẋ = 0.

L̇ = −(x− y+)T (x− y) = 0
⇒ (xi − y+i )(xi − yi) = 0 ∀i

since the summands all have the same sign. This leaves two options:

(1) xi − y+i = 0⇒ xi = y+i . Since ẋi = −(xi − y+i ), this implies that ẋi = 0.

(2) xi − yi = 0⇒ xi = yi ≥ 0. This means that yi = y+i which gives us the
same result as case 1: ẋi = 0.

Therefore, L̇ = 0⇒ ẋ = 0 so we have an equilibrium point. �

Remark 6.4. Since we are allowed to vary b, we can always find network (W, b) such that v is a
fixed point of (*) for any v ≥ 0.

Lemma 6.5. For any v ≥ 0, there exists b such that v is a steady state of (*) with input b.

Warning: v won’t necessarily be stable.

Proof. Choose b = (I −W )v. Let x = v and compute ẋ.

ẋ = −x+ [Wx+ b]+
= −v + [Wv + (I −W )v]+
= −v + [Iv]+
= −v + [v]+ = 0,

since v is presumed to be positive. �

The idea is that there are some collection of stable steady states. The computation of the network
takes some input and sends it to the closest stable fixed point, as imagined in Figure 6.

Figure 6. Computation of Memory Network

Exercise 6.6 (Homework 4). (1) What are permitted sets?
12
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(2) Find all permitted sets for

W =


0 a a b b b
a 0 a a b b
a a 0 a b b
b a a 0 a b
b b b a 0 b
b b b b b 0


where a = −1/2 and b = −3/2.

7. September 22, 2015

7.1. Permitted and Forbidden Sets.

Definition 7.1. A steady state x∗ ∈ Rn≥0 is stable if for all open balls B with x∗ ∈ B there exists

an open ball A with x∗ ∈ A such that for any initial condition x(0) ∈ A, we have x(t) ∈ B for all
t ≥ 0.

A steady state is asymptotically stable if it is stable and there exists a ball of initial conditions
x(0) that converge to it. [This is a stricter condition]

Definition 7.2. A neuron is activated if its activity is nonzero (xi > 0).
A set of neurons σ ⊆ [n] = {1, . . . , n} is permitted with respect to ẋ = −x + [Wx + b]+ if the

neurons can be co-activated at an asymptotically stable steady state for some input b ∈ Rn.
Otherwise the set of neurons is forbidden.

Fact 7.3. For fixed (W, b), there can be a most one steady state x∗ for each σ ⊆ [n].

Note: The definition of permitted sets does not depend on a choice of b.

Proposition 7.4. Fix W and b. If there exists a fixed point x∗ of ẋ = −x+ [Wx+ b]+ such that
(−I +W )σσ is invertible and supp(x∗) = σ, then there is no other fixed point with support σ.

For x ∈ Rn≥0 we define supp(x) = {i ∈ [n] | xi > 0}.

Proof of Proposition 7.4. Let x∗ be a fixed point of (*) with supp(x∗) = σ ⊆ [n]. Then because x∗

is a fixed point, ẋ|x=x∗ = 0,
x∗ = [Wx∗ + b]+,

or entrywise,

x∗i = [
n∑
j=1

Wijx
∗
j + bi]+.

If x∗i > 0 i.e. i ∈ σ:
x∗i =

∑n
j=1Wijx

∗
j + bi.

⇒ x∗σ = Wσσx
∗
σ + bσ

⇒ (I −W )σσx
∗
σ = bσ

⇒ x∗σ = (I −W )−1σσbσ
This is the unique fixed point, though it is only valid if it is positive. �

This is motivation for focusing attention on permitted sets, rather than fixed points.

Theorem 7.5 (Useful). Given n × n matrix W , with σ ⊆ [n] is a permitted set of (*) ⇐⇒
(−I +W )σσ is a stable (Hurwitz) matrix; i.e. all eigenvalues have strictly negative real part.

For W symmetric, we can use the “Useful” theorem together with Cauchy’s interlacing theorem
to obtain hierarchical structure of permitted sets.
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Theorem 7.6. Let A be a symmetric N ×N matrix with real eignevalues λ1 ≤ λ2 ≤ · · · ≤ λN . Let
B be an (N−1)×(N−1) principal submatrix of A with eigenvalues η1 ≤ · · · ηN−1. The eigenvalues
of B interlace the eigenvalues of A:

λ1 ≤ η1 ≤ λ2 ≤ η2 ≤ · · · ≤ ηN−1 ≤ λN .

Corollary 7.7. If A is stable then so is B.
If σ is a permitted set, then so is τ for all τ ⊂ σ. (Only for W symmetric)

Proof. σ permitted implies (−I + W )σσ stable, then by induction using the Interlacing theorem,
every principal submatrix is stable too. �

For next class, we will finish the “Permitted and Forbidden Sets” paper.

7.2. Abstract simplicial complex.

Definition 7.8. An abstract simplicial complex on [n] is a collection of subsets ∆ ⊆ 2[n] such that
σ ∈ ∆ and τ ⊆ σ implies τ ∈ ∆.

Example 7.9. ∆ = {123, 34} and all their subsets.
1

2 3

4
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